
Some good C++ practices
for using the art framework

Marc Paterno
Scientific Computing Division/Fermilab

Revision 5

Contents
1 Scope and intent of this document 3
2 Coding issues 4
3 Design issues 14
4 art-specific issues 22
5 Using C++11 28
6 Suggested reading 31

mailto:paterno@fnal.gov
mailto:paterno@fnal.gov

Thanks

I’d like to expression my appreciation for valuable input (over many years) from
Walter Brown, Chris Green, Chris Jones, Jim Kowalkowski, and Rob Kutschke, for
constructive input. Many of the good suggestions are theirs.

All the mistakes are my own.

1 Scope and intent of this document

This document is intended for an audience that has

• some programming experience,

• at least beginning familiarity with C++, and

• at least beginning familiarity with the art1 framework.

The intent of this document is to help the reader avoid some of the more common
mistakes made by those with little experience in C++, or in use of the art framework,
or both.

C++ is a large and complex language, and so this presentation could be extended
almost without limit. I’ve hit topics of particular interest to me.

Please feel free to interrupt with questions or comments of interest to you.

1The art framework’s home page is https://cdcvs.fnal.gov/redmine/projects/art.

https://cdcvs.fnal.gov/redmine/projects/art

2 Coding issues

Coding issues address how we write code. These are the lower-level “tactical” issues.
There is nothing here specific to art; these suggestions apply to any C++ code you
might ever write.

2.1. Use good names.
Good names are crucial to the clarity of code. This goes for functions, classes, and
variables. Your code will be written (and re-written, or modified) a few times. It will
be read many times. Make it easy to read!

If your variable, class, and function names are good enough, your code will need little
commenting. Very well-written code carries few comments, not many comments.
The need to write extensive comments is very often a sign of bad name choices.

Good names are not always long. A loop index should be called something short,
like i, not thisLoopIndex.

Be wary of re-using loop variable names in the same function. While the compiler
will not complain, it can cause confusion for readers. If you follow §3.4, you’ll avoid
this naturally.

2.2. Avoid bare use of new.

The expression new X allocates memory for, and then constructs (in that memory)
an object of type X; the value of the expression is the address of the created object.

You should almost never have a call to new in your code. Bare calls to new are
the most common cause of memory leaks, because one must be careful to have a
matched delete for all possible code paths, including those resulting from exception
throws.

1 int* ip1 = new int(3); // bad:
2 std::shared_ptr<int> ip2(new int(3)); // not preferred; see below
3 std::unique_ptr<int> ip3(new int(3)); // ok, see below
4 std::auto_ptr<int> ip4(new int(3)); // ok, but deprecated;
5 // prefer unique_ptr
6 auto ip5 = std::make_shared<int>(3); // preferred
7 // ip5 is shared_ptr<int>
8 auto ip6 = cet::make_unique<int>(3); // ip6 is unique_ptr<int>

Listing 2.1: Good and bad uses of new

The cet::make_unique function template will be in the next release of cetlib.

Allocate every resource in a single code statement which initializes a manager object
(e.g., a smart pointer) to manage the resource.

Don’t use bare pointers as data members! If you follow this rule, your class
destructors will be empty—so the compiler-generated destructor will be correct, and
you don’t even have to write one.

2.3. Use RAII.
RAII stands for resource allocation is initialization. This is a generalization of §2.2.
Memory is not the only resource; file handles, database handles, or anything that
can get created and destroyed, is a resource. Allocation and deallocation of resources
(e.g., opening and closing of files) should be managed through the lifetime of objects.
The object lifetime rules are enforced by the compiler, and use of RAII ensures
no leaks of resources—even if exceptions are thrown. You do not need to write
try/catch blocks.

Commonly, the most exception-safe code contains no try/catch blocks.

1 #include <cerrno>
2 #include <cstdio>
3 #include <system_error>

5 struct FileMgr
6 {
7 std::FILE* const fp;
8 FileMgr(const char* name, const char* mode) :
9 fp(std::fopen(name, mode)) {

10 if (!fp)
11 throw std::system_error(errno, std::system_category(), name);
12 }
13 FileMgr(FileMgr const&) = delete;
14 ˜FileMgr() noexcept { std::fclose(fp); }
15 };

17 void some_function_that_might_throw(); // implementation not shown

19 void example() {
20 FileMgr f("myfile.txt", "w");
21 some_function_that_might_throw();
22 fprintf(f.fp, "Some silly text.\n");
23 } // fclose is called upon exit

Listing 2.2: A simple resource manager.

2.4. Be const-correct.
Use the compiler to help catch errors. const is one of the simplest ways to do this.

• If a “variable” should not change its value after initializtion, declare it to be
const. Any mistaken attempt to change it will then cause a compilation error.

• If a member function does not change the state of the object on which it is
called, declare it to be const.

• If an argument of a function is not to be modified by that function, declare it to
be const (this is usually a reference-to-const: const&).

• Values that can be determined at compile-time should be declared constexpr.
This makes the compiler evaluate the expression that provides the value.

Listing 2.3: Using constexpr.
1 #include <cmath>
2 constexpr double pi() { return std::atan(1.0) * 4.0; }
3 // Calls to the function pi() will be replaced, at compile time,
4 // by the double representation of pi.

N.B.: This becomes even more important when programming for a multithreaded
world.

2.5. Always initialize objects. Initialize variables at
the point of declaration.

This goes for both stack objects and member objects (data members). Leaving an
undefined object often leads to “undefined behavior”, which most often means
eventual memory corruption, crashing, or both.

1 double x(0.0);
2 std::vector<double> v(3, 1.1); // three elements, each is 1.1
3 // Here’s how to initialize for-loop variables...
4 for (std::size_t i = 0, sz = v.size(); i!=sz; ++i) { ... }

Listing 2.4: Initialize variables when declared.

Following these rules, the bodies of constructors of classes you write will usually be
empty. All the initialization should be done in the initializer-list.

1 struct FileSentry {
2 std::FILE* const fp; // our data member
3 FileSentry(const char* name, const char* mode) :
4 fp(std::fopen(name, mode)) // initializer-list (only 1 member)
5 { ... } // implementation as shown earlier
6 ... // remaining implementation as before
7 }

Listing 2.5: Using an initializer-list.

2.6. Use caution with problematic libraries.
Sometimes you have to use libraries that do not follow good C++ practice, such as
avoidance of bare pointers. When presented with such libraries, a few defensive
measures are in order:

• Be sure to understand each function you have to use. Does passing a pointer
to a function pass ownership of the object pointed to, or does it not?

• Sometimes the answer is “it depends on the circumstances”. In such a case,
try to encapsulate the use of the dangerous resource.

• Sometimes, use of sentry objects (see §2.3) can avoid the problems inherent in
a poorly designed interface.

2.7. Compiler-generated code will not contain
errors.

Use compiler-generated copy constructors, copy assignment operators, and destruc-
tors whenever they do the right thing. Write your classes so they always do the right
thing.

This becomes still more important with C++11, where the compiler, under the right
conditions, may also supply a move constructor and a move assignment operator.

3 Design issues

Design issues address what our code is intended to do. These are higher-level
“strategic” issues. There is nothing here specific to art; these suggestions apply to
any C++ code you might ever write. Almost all of these suggestions apply to other
languages as well.

3.1. Take a moment for design.
Each class, and each function, should have a clear purpose. Take a moment to
think “What does this class (or function) do?”. Don’t think first of what a class
contains, or how a function is implemented.

Some good rules of thumb:

1. For almost all classes, you should be able to express the essence of the class
in one or two sentences, which do not make mention of implementation.

2. For almost all functions, you should be able to express the result of the function,
without making mention of the implementation.

Example: std::cos(double x) calculates the cosine of the angle x, expressed in
radians. Note there is no mention of lookup-tables, or calling of assembly language
routines.

Since you have thought of this one- or two-sentence description of your class or
function, put it at the top of the header as documentation for the class. This is
probably the best concise documentation that can be provided for each class or
function.

3.2. Plan for change.
Code is continually revised, updated, extended, and reused. Some up-front prepara-
tion for this makes future modifications easier.

For example, if you’re introducing a second way to do something, plan for more in
the future—unless other ways are logically impossible.

1 bool alg_b = ps.get<bool>("do_alg_b");
2 if (do_alg_b) { alg_b(); }
3 else { alg_a(); }

Listing 3.1: Lack of planning. What if a third option is needed?

1 using art::Exception; // to make lines shorter here
2 using art::errors::Configuration;
3 std::string alg = ps.get<std::string>("alg");
4 if (alg == "alg_a") { alg_a(); }
5 else if (alg == "alg_b") { alg_b(); }
6 else { throw Exception(Configuration, "unknown alg")
7 << alg); }

Listing 3.2: Good planning. New options would not break existing code.

3.3. Don’t over-generalize.
The previous point (§3.2) could have been labeled “Don’t under-generalize”. This
point says to avoid the other extreme, over-generalization.

• Don’t introduce infrastructure for multiple options when only one option exists.

• Don’t introduce a base class when you will have only one derived class.

• Don’t write a class or function template that will be instantiated for one specific
type.

Abstractions always cost some mental overhead; introduce them when they are
useful, but only where they are useful. Don’t introduce them “just in case things
change later”.

3.4. Avoid the blob-o-code.
Giant functions are hard to understand, and so are hard to get right. 200-line
functions (or 2000-line functions!) are not rare in some code bases. In dozens
of reviews, I have never seen a well-written, understandable, correct function that
is hundreds of lines long. Please do not take this as a challenge to make yours
the first. Have mercy on your colleagues, and make functions short enough to be
understandable. Function calls (with small objects as parameters, and large objects
passed by reference) are cheap. Some guidelines:

• If your function contains more than one looping or if block, consider encapsu-
lating each block as its own function.

• Considering declaring the small function inline, or defining it using a lambda-
expression.

• If your function contains blocks of code, set off by comments, consider making
each commented section a function, with a good name that makes the comment
superfluous.

• If you have nested control structures, consider making the inner one a function
(well-named, of course).

• Consider using one of the algorithms of the Standard Library (from the Standard
header <algorithm>, rather than writing a loop. C++11 is much improved over
C++03 for this.

1 #include <algorithm> // for std::copy and std::for_each
2 #include <iostream>
3 #include <iterator> // for std::ostream_iterator.
4 #include <vector>
5 using namespace std; // to save space in this listing!
6 std::vector<Item> v { ... }; // initialized somehow

8 // C++ 2003: explicit loop
9 for (vector<Item>::const_iterator i = v.begin(), e = v.end();

10 i != e; ++i)
11 { cout << *i << "\n"; }

13 // C++ 2003: standard algorithm (std::copy).
14 copy(v.begin(), v.end(), ostream_iterator<Item>(cout, "\n"));

16 // C++ 2011
17 for_each(begin(v), end(v), [](Item const& x) {cout << x << "\n"; });

19 // C++ 2011, using algorithm from cetlib/container_algorithms.h
20 cet::for_all(v, [](Item const& x) {cout << x << "\n";});

22 // C++ 2011, using range-for loop
23 for (auto const& x : v) cout << x << "\n";

Listing 3.3: Improved functional algorithm use in C++11.

3.5. Use standard containers. Prefer std::vector.
In C++, use of a C-style array is rarely the correct choice. Use standard contain-
ers: std::vector, std::list, std::dequeue, std::set and std::map. C++11
introduces a few more standard containers.

std::vector should be your first choice for a container, unless you have a clear,
specific reason to choose something else.

std::vector guarantees that its objects are stored in contiguous memory locations.

Use std::array if you require a container that has its size fixed at compilation-time.
C-style arrays have no advantage over std::array.

Learn the interface of std::vector, especially the various constructors and the use
of reserve and resize.

If you think you need std::dequeue, think again. It is a very special-purpose
container; it is almost never the right choice.

I did not include std::multiset and std::multimap in the list of containers,
because I almost never prefer them.

3.6. Don’t use inheritance to implement
aggregation.

Use inheritance to introduce a type that can be re-used, by defining an interface that
can be implemented in several different ways. Example: in art, EDFilter defines an
interface, and your filter classes inherit from it. EDFilter is used by the framework
so that any class you derive from it can be used in any place that an EDFilter can
be used.

If you want a class to contain an object of another type, add a data member of that
type. Do not use inheritance.

Inheritance should be used to model substitutability. Inheritance induces strong
coupling between classes, and makes it hard to change one without affecting the
other. Why is this? The derived class has the whole interface of the class from
which it inherits. A container class does not have the whole interface of any class it
contains; it can choose what part, if any, of that interface to support.

An airplane may contain a pilot, but an airplane is not substitutable for a pilot.

4 art-specific issues

These are issues peculiar to the use of the art framework.

4.1. Use the module interface as designed.
All modules have a similar interface, which reflects the “lifecycle” of the event-
processing loop.

• In the constructor, initialize all the module state that you can.

• In beginJob, initialize whatever could not be initialized at construction time.
It is certainly safe to invoke services in beginJob. In endJob, clean up after
anything that was initialized in beginJob.

• In beginRun, initialize whatever requires information available at the start of a
new run, e.g., the run number. Histograms that summarize the data for a run
can be initialized here. At endRun, clean up after anything that was initialized
at beginRun, e.g., fitting or saving histograms. Clean up run-related things
here, not at the next call to beginRun.

• beginSubRun and endSubRun are similar to beginRun and endRun (but for
subruns, of course).

• In the destructor, clean up whatever was initialized in the constructor. N.B.: if
you are following the suggestions above, your destructors are mostly empty.
Then you don’t have to write one, because the compiler-generated destructor
will be correct.

4.2. Use the preferred form for produce.2

The interesting part of your module is the part that does the physics work, not the
part that interacts with the framework. Assume ThingFinder has data members
tag_a_ and tag_b_, of type InputTag. The recommended form for produce is:

1 void ThingFinder::produce(art::Event& ev) {
2 auto h1 = ev.getValidHandle<InputTypeOne>(tag_a_);
3 auto h2 = ev.getValidHandle<InputTypeTwo>(tag_b_);
4 auto prod = cet::make_unique<OutputType>();
5 thingAlgorithm(*h1, *h2, *prod); // all the physics is here!
6 ev.put(std::move(prod));
7 }

Listing 4.1: Recommended style for writing produce.

The signature of the putative function thingAlgorithm is:

1 void
2 thingAlgorithm(InputTypeOne const& a, // input, const
3 InputTypeTwo const& b, // input, const
4 OutputType& out); // note: out is non-const

Listing 4.2: Signature of a physics algorithm.

If thingAlgorithm is a member function, it should probably be declared const.

2and filter

Some results of this design are:

• If an exception is thrown anywhere, no memory gets leaked. The code is
exception safe.

• If the required inputs are not found, we never even create the data product.

• The ThingFinder module handles all the framework-related tasks (interaction
with the Event, Handles, etc.

• The function thingAlgorithm knows about physics-related things, but isn’t
cluttered with framework-related things.

• Testing of thingAlgorithm can be done outside of an art job, making testing
easier and thus more likely to be done.

• There is a greater chance of re-using thingAlgorithm in another module type.

• It might be useful to make thingAlgorithm a member function in an algorithm
class that can be used elsewhere; you’d then put thingAlgorithm in some
library that can be shared between multiple modules.

As a bonus, this code will be relatively easy to make thread-safe, when doing so
becomes important.

You may benefit from the command-line utility artmod.

1 ARTMOD(1) User Contributed Perl Documentation ARTMOD(1)

3 NAME
4 artmod: Generate clean module source for ART.
5 SYNOPSIS
6 artmod -h | --help | -?
7 artmod --help-types
8 artmod [optons] [--] module-type qualified-name
9 Options: --boilerplate|-b file |

10 --entries|--entry|-e entry+ |
11 --header-loc path |
12 --split |
13 --split-ext [lib-source-extension] |
14 --verbose|-v
15 Options marked with + are repeatable and cumulative.
16 DESCRIPTION
17 artmod is a tool to produce an ART module source skeleton for an
18 analyzer, a filter or a producer. The user can specify which opt-
19 ional member functions are to be configured and whether to split
20 the source into three files or combine it into one. In addition,
21 the name of a file wherein boilerplate comments or code may be
22 found for insertion into the source may be specified.

Listing 4.3: Partial output from artmod -h.

4.3. Communicate with your collaborators!
Software development is a social activity (antisocial programmer stereotypes notwith-
standing).

• Often the best way to improve your code is to modify other code you are using.
For example, you might need to add a new member function or new member
data to some other class.

• Failure to do this when needed makes your code more complicated, and thus
more likely to be wrong. It also makes your code more likely to break, since
you have to maintain the added functionality of the other class outside of that
class.

• Others in your collaboration are likely to duplicate your work. Often they
will make trivially different choices, or different errors. Such redundant code
makes everyone’s work harder.

• Communicate with your collaborators! Modify the other code as needed, so
that everybody’s code is improved.

5 Using C++11

These issues are specific to the use of C++11. The C++11 standard introduced many
new language and library features. The items mentioned here are only the tip of the
iceberg.

5.1. Use the type-specifier auto.
Compare for clarity and brevity:

1 std::vector<std::string> names = ... // initialized somehow
2 for (std::vector<std::string>::const_iterator i = names.begin(),
3 e = names.end();
4 i != e; ++i) {
5 do_something_with_a_name(*i);
6 }

Listing 5.1: Old-style for loop.

and

1 std::vector<std::string> names = ... // initialize somehow
2 for (auto i = names.cbegin(), e = names.cend(); i != e; ++i) {
3 do_something_with_a_name(*i);
4 }

Listing 5.2: Using auto.

Use auto to declare a variable whenever the compiler can use the initializer to
deduce its type.

1 auto x = std::cos(3.1); // auto -> double
2 auto const& y = ps.get<std::string>("n"); // auto -> std::string
3 auto z = std::qsort(...); // illegal: returns void

5.2. Use the range-based for statement.
The new range-based for statement allows for simpler iteration over any “range”.
std::string, Standard Library containers, and C-style arrays are all ranges. User-
defined classes which have right interface (supporting begin and end, and defining
an iterator) are also ranges, and can be used with the range-based for.

Compare the range-based for loop to the old-style for:

1 typedef std::map<std::string, std::string> dictionary;
2 dictionary definitions; // filling omitted

4 // C++2003 for loop
5 for (dictionary::const_iterator i = definitions.begin(),
6 e = definitions.end();
7 i != e;
8 ++i) {
9 std::cout << i->first << ": " << i->second << ’\n’;

10 }

12 // C++2011 range-based for loop
13 for (auto const& d : definitions) {
14 std::cout << d.first << ": " << d.second << ’\n’;
15 }

Listing 5.3: Range-based for loop.

6 Suggested reading

Three books I can recommend are:

• For C++ coding advice: C++ Coding Standards, by Herb Sutter and Andrei
Alexandrescu.

• For general programming advice: The Pragmatic Programmer, by Andrew
Hunt and David Thomas.

• For object-oriented design advice: Object-Oriented Design Heuristics, by
Arthur J. Riel. Some of the C++ suggestions in this book are dated, but the
object-oriented design advice is excellent.

For C++11, I recommend:

• The C++ programming Language, 4th edition, by Bjarne Stroustrup.

A web site with good reference information is http://en.cppreference.com/w/.

http://en.cppreference.com/w/

	1 Scope and intent of this document
	2 Coding issues
	3 Design issues
	4 art-specific issues
	5 Using C++11
	6 Suggested reading

