
M U O N g − 2

O F F L I N E C O M P U T I N G
A N D S O F T W A R E
M A N U A L
[G M 2 V 6 _ 0 3 _ 0 0]

July 22, 2016 Git version: v6_03_00_00-0-g74be1a0 GM2-doc-1825

http://gm2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1825

2

Quick Start Guide
Send suggestions to jstaplet@fnal.gov

Setup g-2 software (Section 3.1)
. /cvmfs/gm2.opensciencegrid.org/prod/g-2/setup Prepare shell for software from CVMFS
setup gm2 v6_03_01 -q prof You now have the gm2 and mrb commands

Create/Setup a development environment (Section 3.2)
mkdir DEVAREA; cd DEVAREA; mrb newDev Create new local development area
. DEVAREA/localProducts_gm2_v6_03_00_prof/setup Prepare shell to use local development area

Get/Build code using mrb (Section 3.3)
cd DEVAREA/srcs; mrb gitCheckout PACKAGE Checkout PACKAGE into srcs/ directory
. mrb setEnv Prepare shell to compile checked out PACKAGE(s)
mrb build (Re)Build everything in local development area

mailto:jstaplet@fnal.gov

Contents

1 Introduction 7

1.1 What code goes with this document? 7

1.2 The Release Philosophy 8

2 Setting up a Development Environment 11

2.1 Your options 11

2.2 Fermilab gm2 group Virtual Machines 12

2.3 Native development on your own computer 13

2.4 CentOS Virtual Machine 14

2.5 Docker container 14

3 Developer Workflow 15

3.1 Setup/Initialize gm2 software environment 15

3.2 Setting up a development area 15

3.3 Checking out and building code 16

3.4 Incremental rebuilds 17

4

4 Using a Mac for Development 21

5 Running the simulation 23

5.1 Component packages in the simulation 23

5.2 Using a base release 23

5.3 Using a point release 23

5.4 FCL files for the simulation 24

6 Running Jobs on the Grid 25

6.1 First Learn about jobsub 25

6.2 Output location 25

6.3 Generating Data 26

6.4 gridSetupAndSubmit.sh 26

6.5 submit-release.sh 27

6.6 submit-localrelease.sh 27

7 Storing Data and Using SAM 29

7.1 What is SAM? 29

7.2 File Locations 29

7.3 User Datasets 30

7.4 Running over a Dataset 31

7.5 Automatic SAM Database population 31

5

8 Writing Source Code 33

8.1 Top level CMakeLists.txt file 33

8.2 Organizing Source Code 35

8.3 Writing Modules 35

8.4 Writing Services 36

8.5 Writing Input Source Modules 36

8.6 Directory level CMakeLists.txt file 36

8.7 Libraries produced from building 38

8.8 Using External Code (Linking) 38

9 Things You May Do in Your Code 45

9.1 Dealing with parameters 45

9.2 Readling enviornment variables 45

9.3 Throwing an exception 45

9.4 Finding a file 46

10 Frequently Asked Questions 47

11 Releases of gm2 49

11.1 gm2 v6_01_00 -q prof and (-q debug) 49

11.2 gm2 v6_00_00 -q prof and (-q debug) 49

11.3 gm2 v5_01_00 -q e6:prof 51

11.4 gm2 v5_00_00 -q e6:prof and (-q e6:debug) 51

11.5 gm2 v201402 -q e4:prof 52

11.6 The Release Philosophy 52

6

12 What is this document? 55

12.1What code goes with this document? 55

12.2 Obtaining this documentation 56

12.3 Obtaining the source for this documentation, contributing to it, and building it 56

Index 61

1

Introduction

This document is meant to be a user’s manual to the Muon g-2 offline
and simulation software and computing system. It replaces the docu-
mentation we had in the Redmine Wiki because the Wiki was hard to
edit and keep up-to-date, hard to sync with versions, hard to search,
and required a network connection. This PDF file is trivial to search
and you can copy it to your computer/tablet/phone/watch and read it
anywhere including your office, in meetings, on the plane, in the tub,
etc. It is also generated by a git repository using the same build system
infrastructure as our code base, so it is easy to version itself and keep in
sync with code versions.

The idea is to have documentation that is easy to read, easy to write,
and easy to keep up to date. All links in the document are click-able in
your PDF reader.

One nice thing about having Wiki pages was that each page can be
short and so the documentation looks manageable, until you try to find
something. The problem with one big PDF file is that it will be big and
will look overwhelming. Remember to read the section titles carefully
and just read what you need. Furthermore, all of the links to sections
(e.g. in the table of contents) are live and will allow you to navigate
the file easily. Nearly every PDF reader has a back button to take you
back to previously read pages (back-traversing links if necessary); it will
probably come in handy.

1.1 What code goes with this document?

The latest official version of this documentation is in GM2 DocDB as
GM2-DOC-1825.1 Newer releases of gm2 (staring from gm2 v5_01_00) 1 DocDB uses its own versioning

scheme (just a sequential number)
which does not correspond to the gm2
release.

will have a copy of this manual that corresponds to the particular gm2
version at $GM2SWDOCS_DIR/manual.pdf.

http://gm2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1825

8 offline computing and software manual [gm2 v6_03_00]

The title of this document states the corresponding version of gm2.
gm2 is the “umbrella” product that specifies a release. For example,
this version of the document goes with gm2 v6_01_00. On the bottom
of the title page is the git version information for this document itself.
For this version, it reads v6_01_00_00-9-g556979a. There are three
or four parts to this description, separated by dashes (not underscores;
the underscores are part of the version). The first part corresponds
to the gm2 version, with an additional two digits at the end since the
documentation may be updated more often than the g-2 code. This
version should be the git tag of this document. The second part is
the number of commits past the tag. If it is non-zero, then there are
untagged changes. The third part is g followed by the git hash of the
commit corresponding to this document (e.g. 0be91c0). All of this
could be followed by -dirty, which means that this document comes
from source files with uncommitted changes.2 2 Official documentation has zero for

the second part (number of untagged
commits) and no -dirty.

1.2 The Release Philosophy

What is a gm2 release? A gm2 release is a versioned collection of
libraries and executables that you either use or build your code against.
A particular gm2 release contains a particular version of gcc, art, root,
geant4, etc. These libraries/executables are called the externals. A gm2
release may also contain g − 2 applications and libraries built against
those externals (e.g. gm2ringsim, artg4). If the versions of those
packages are suitable for you, then you can use them directly without
having to build them yourself. This means we have official versions of
these packages.

Official releases are important. For the purpose of scientific repro-
ducibility, it is important to know how results were produced. Using
a versioned release means that we know the code used for an analysis
and can re-run it to do further analyses or look for mistakes. Official
releases are essential for sharing code, as is gives people a common base
and starting place.

The philsophy of gm2 releases is that the first (major) version num-
ber in the release (e.g. the 5 in v5_00_00) is the release series. Releases
in the same series are built with the same version of externals (gcc,
art, geant4, root, etc) and so they are all binary compatible. The
vX_00_00 release only has externals in it and is called a base release.
We then add point releases (e.g. v5_01_00, v5_02_03) containing g− 2
libraries and applications (e.g. gm2ringsim). If there is a new art or
root, then the major version number increases (e.g. to v6_00_00) and a
new series is started. New major releases (new series) should occur only
3-4 times per year.

The point releases can occur more often and represent official

introduction 9

changes to the g − 2 code base (e.g. new geometry or features in the
simulation). Feature changes advance the middle (minor) version
number and bug fixes advance the last (patch) version number. So
the first release of g − 2 code for a new series is vX_01_00. A feature
addition will advance to vX_02_00. A subsequent bug fix will advance
to vX_02_01.

Users adoption of these point releases is optional. They can always
build all of the necessary code based on the vX_00_00 base release. But
using a point release can be convenient and save a large amount of time
by using pre-built libraries instead of building them by hand. The point
releases also represent a trackable official progression of features and
bug fixes. Users can also use libraries from a point release, but build
parts of the release themselves that they are developing (e.g. developing
gm2ringsim, which is also in the release). In these cases, the build
system will automatically use the user developed code instead of what
is in the release. The superbuild system, which does builds across
platforms for use on the grid, will automatically mark such user-built
libraries as unofficial.

1.2.1 How do releases help me as a user/developer?

If the official released code is suitable for you (e.g. you are not develop-
ing the code in the release, but are instead developing code that uses
the release), then using an official release will save you compilation
time and will be more convenient. You can more easily track what you
have run on the grid. You may be able to run without having to build
anything (e.g. simply running the official gm2ringsim.

You should use an official point release whenever possible. Instruc-
tions for setting up your development area and how to migrate to new
releases are given in the section under the release notes as well as in
Chapter 3 of this manual.

2
Setting up a Development Environment

A g − 2 development environment consists of an operating system, a
suite of software tools for compilation and package management, the
g− 2 software itself, and the software packages upon which it depends.
All of the software is distributed over the CVMFS network file system.

Our software is built upon the art event-processing framework,
which is only supported on specific versions of Linux and Mac OS X. If
you are not using one of these operating systems then you will need to
either work remotely by logging in to pre-configured systems or set up
operating system virtualization on your own computer.

2.1 Your options

There are at least four different methods which you can use to setup a
development environment with access to the g− 2 software:

• g− 2 group Virtual Machines (gm2gpvmNN.fnal.gov)
• native development on your own computer (only certain versions of

Mac/Linux)
• running a CentOS Virtual Machine (VM) on your own computer
• running a Docker container on your own computer

Their relative strengths and weaknesses will determine the best
choice for you. The g − 2 group Virtual Machines (VMs) only require
Kerberos and SSH (or Putty) for logging in to preconfigured systems
which reside onsite at Fermilab. This can be the easiest option to set
up, but requires a good/fast connection to fnal.gov and provides rela-
tively poor computing performance. Your own laptop or desktop may
run the software faster, but this is only supported for certain versions of
Mac OS X or Linux and also requires installation of a special network
file system. If you can install VirtualBox and Vagrant on your computer
then it can be relatively simple to use a CentOS Virtual Machine
provided by the g − 2 collaboration. A lighter-weight solution may
be provided by the Docker toolkit, which is a new (and experimental)

12 offline computing and software manual [gm2 v6_03_00]

approach which lies somewhere between native development and a
Virtual Machine. The next sections will cover these in more detail.

All four development environments discussed in this chapter will
provide access to the g − 2 software releases via a network filesystem
called the CernVM File System (CVMFS), which is used by many HEP
experiments to distribute software to collaboratores. It is optimized
for the distribution of files and metadata from web servers directly to
a virtual file system mounted at /cvmfs in the end-user’s development
environment.1 Its focus on read-only software distribution allows it to 1 The CVMFS caching strategy has the

effect of hiding directories which have
not yet been accessed within the user’s
virtual file system. A consequence
of this is that checking the top-level
directory with ls /cvmfs will show
only subdirectories which have recently
been accessed. If you check /cvmfs
and do not see the subdirectory
gm2.opensciencegrid.org, then try
ls /cvmfs/gm2.opensciencegrid.org
before you conclude that it is not
there.

avoid firewall problems typical to other network file systems and to
aggressively cache directory contents in a way that is nearly invisible to
the user. You can read more about it at https://cernvm.cern.ch/portal/
filesystem.2

2 Note that we currently
use the subdirectory
/cvmfs/gm2.opensciencegrid.org/.
The subdirectories
oasis.opensciencegrid.org and
fermigrid.opensciencegrid.org are
deprecated. Check your paths, and be
sure not to use them!

Follow the instructions in one of the following sections to set up your
development environment, and then go to Chapter 3.

2.2 Fermilab gm2 group Virtual Machines

These Virtual Machines are already set up on computers on the
Fermilab network.3 If you have not yet set up Kerberos for network

3 This is different from running
the Virtual Machines on your own
computer, which is covered in later
subsections.

access at Fermilab, you can find instructions by going here: https:
//cdcvs.fnal.gov/redmine/projects/gm2cdr/wiki/InstallingKerberos.
You must install Kerberos and download/install a configuration file
which tells it about the FNAL.GOV domain. Fermilab uses this
system for site-wide network authentication. You must use your
Fermilab username and password to authenticate by typing kinit
your_fnal_username@FNAL.GOV (case sensitive) into a terminal on
your own computer and entering your password when prompted.4 4 This obtains a Kerberos ticket,

stores it on your computer, and
automatically uses it when you
attempt remote login to any Fermilab
computer.

Kerberos tickets expire after a preset time (currently 24 hours), after
which you will have to run the kinit command again and enter your
password.

Nearly every Mac or Linux computer will have OpenSSH installed,
which provides the ssh command which we use to open a terminal
session on a remote computer (or ‘host’). Windows users can install
Putty, which provides much of the same utility, but some of the
following instructions may need to be adapted.

There are certain configuration options needed for SSH which tell
it how to authenticate with the g − 2 group virtual machines. These
options are placed in a text file (.ssh/config in your home directory
on Mac/Linux):

Host gm2gpvm*
ForwardX11 yes
ForwardX11Trusted yes
GSSAPIAuthentication yes

https://cernvm.cern.ch/portal/filesystem
https://cernvm.cern.ch/portal/filesystem
https://cdcvs.fnal.gov/redmine/projects/gm2cdr/wiki/InstallingKerberos
https://cdcvs.fnal.gov/redmine/projects/gm2cdr/wiki/InstallingKerberos

setting up a development environment 13

GSSAPIDelegateCredentials yes
GSSAPITrusDns yes
#PreferredAuthentication gssapi,gssapi-with-mic

Add this to the config file if it already exists. The last option is
necessary in some cases but not others, depending on your version of
OpenSSH. If your login is rejected then uncomment it by removing the
pound symbol (#). You can then login to gm2gpvm02, for example, by
typing

ssh your_fnal_username@gm2gpvm02.fnal.gov

At your first login you will be prompted to accept an RSA key
(respond with yes).

You can find more information at https://cdcvs.fnal.gov/redmine/
projects/g-2/wiki/ConfiguringSsh and https://cdcvs.fnal.gov/redmine/
projects/g-2/wiki/GPCF, though these may be somewhat outdated.

2.3 Native development on your own computer

The art event-processing framework will run natively on Scientific
Linux Fermi (SLF) versions 5, 6, and 7, and Mac OS X up to (but not
including 10.11).5 The g− 2 software is tested on SLF6 and OS X, so 5 Note that OS X 10.11 (El Capitan)

is NOT supported due to System
Integrity Protection (SIP), Apple’s
new security ‘feature’.

we recommend one of these. Other Linux distributions known to work
are Scientific Linux (without the ‘Fermi’), Red Hat Enterprise Linux,
and CentOS. Modern versions of Fedora Linux and SuSE Linux may
also work.6 Debian-based variants such as Ubuntu are not supported 6 The Linux distribution ecosystem

produces many different types of
Linux-based operating systems which
may have major or minor similarities
or differences, and these differences
range from fundamental system
structure to superficial packaging
choices. The Red Hat distribution
serves as a starting point upon which
many other distributions are built.

(but may be in the near future).
If you are using one of these operating systems, then you only need

to install the tools required to use the CVMFS network file system.
The required software is provided by CERN at http://cernvm.cern.ch/
portal/filesystem/downloads. Installation instructions are provided
below.

2.3.1 CVMFS installation on Linux

Instructions can be found here: https://twiki.grid.iu.edu/bin/view/
Documentation/Release3/InstallCvmfs.

2.3.2 CVMFS installation on Mac OS X

Instructions can be found here: https://cdcvs.fnal.gov/redmine/
projects/g-2/wiki/InstallingOasisOnMacLaptop.

https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/ConfiguringSsh
https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/ConfiguringSsh
https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/GPCF
https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/GPCF
http://cernvm.cern.ch/portal/filesystem/downloads
http://cernvm.cern.ch/portal/filesystem/downloads
https://twiki.grid.iu.edu/bin/view/Documentation/Release3/InstallCvmfs
https://twiki.grid.iu.edu/bin/view/Documentation/Release3/InstallCvmfs
https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/InstallingOasisOnMacLaptop
https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/InstallingOasisOnMacLaptop

14 offline computing and software manual [gm2 v6_03_00]

2.4 CentOS Virtual Machine

You can set up a Virtual Machine on your computer which includes a
supported operating system, access to CVMFS, and all of the required
software tools. After it is set up, it will compile and run the g − 2
software using your own CPU.

First you need to install VirtualBox and a Virtual Machine setup
tool called Vagrant. Then go to Adam Lyon’s centos-gm2-dev Github
page, where you can find complete instructions for using Vagrant to set
up a fresh CentOS VM. Be sure to follow the command-line instructions
for installing the vagrant-guest plugin, clone the github repository,
and provision the VM. This can take some time, as Vagrant starts with
a small CentOS system image, updates it, and runs some additional
scripts.

After this, you can start the Vagrant VM by typing the command
vagrant up. This must always be done in the same directory as the
file Vagrantfile which lives in the centos-gm2-dev directory. You can
log in to the virtual machine by simply typing vagrant ssh.7 Multiple 7 Note that you will have to run the

command vagrant up each time the
VM has been stopped.

shells may be opened simultaneously simply by executing vagrant ssh
in another terminal. You can pause the virtual machine with vagrant
suspend, and shut it down completely with vagrant halt. You can
check the status of the VM with vagrant status (as well as vagrant
global-status).8 8 Many of these commands accept an

ID for the VM; this is the hexadecimal
code listed in the first column of
output from vagrant status.

The Vagrant command-line utility has very complete help output,
which you can access by simply typing vagrant. Help for a particular
command can be accessed by vagrant COMMAND -h.

2.5 Docker container

[TODO]

http://www.virtualbox.org/
https://www.vagrantup.com/downloads.html
https://github.com/lyon-fnal/centos-gm2-dev
https://github.com/lyon-fnal/centos-gm2-dev

3
Developer Workflow

After you have finished setting up your development environment
(see Chapter 2), you will have access to the g − 2 software at
/cvmfs/gm2.opensciencegrid.org.

3.1 Setup/Initialize gm2 software environment

Assuming the CERN Virtual Machine File System is mounted at
/cvmfs1, you can get started with 1 This will be true on the g − 2

group virtual machines (gm2gpvm),
and for some other specialized
environments. Be sure to use
the latest CVMFS directory
(/cvmfs/gm2.opensciencegrid.org)
instead of the deprecated locations
containing oasis or fermiapp.

source /cvmfs/gm2.opensciencegrid.org/prod/g-2/setup

This will print some information about release versions of the gm2
software, including the appropriate command which you should use now
to set up the latest release:

setup gm2 v6_03_00 -q prof

At this point you can invoke art through the command gm2, which
accepts the same command-line arguments as the art executable.
For example, the Mock Data Challenge Zero simulation can be run
by executing gm2 -c mdc0.fcl and all output files will be placed in
your current working directory. This is adequate for basic use of the
g− 2 analysis tools using a stable release version. Continue to the next
section if you will be modifying the source code for gm2 or one of its
dependencies (gm2ringsim, gm2dataproducts, artg4, etc).

NOTE: The commands above must be run for every new login
session because they modify the shell environment.

3.2 Setting up a development area

The instructions above set up pre-compiled versions of the g − 2
software packages which are accessible from /cvmfs. However, active
development of this software requires a local build environment for

16 offline computing and software manual [gm2 v6_03_00]

testing changes to the code.2 The ups packaging system and mrb build 2 NOTE: Rebuilding the software
is NOT necessary if your analysis
only requires changes to FHiCL files
(changing module parameters, analysis
paths, or re-running analysis using
different input files or numbers of
event). Rebuilding is required if you
must change source code for an art
module or service.

scripts allow you to check out and build code for a particular package,
relying on pre-compiled code in /cvmfs for packages which are not
under development. This allows developers to work on only part of
the g − 2 analysis code (e.g. gm2ringsim) without having to build
everything else.

After the environment setup from the previous section, we use
mrb to setup and initialize a development directory and shell build
environment. The development directory can have any name or be at
any location you choose.3 A new development area DEVAREA can be 3 This location may require

large amounts of storage space.
If on gm2gpvm please keep
application development in
/gm2/app/users/yourusername
and manual storage of large files
in /gm2/data/users/yourusername.
This automatically stores files else-
where using the Network File System
(NFS). (NOTE: If the subdirectories
yourusername do not already exist
in these locations, you can probably
create them using mkdir.)

setup quickly by doing4

4 If the mrb command is not available,
then you probably need to set up the
gm2 software environment using the
instructions from the previous section.

mkdir DEVAREA
cd DEVAREA
mrb newDev

This sets up source, build, and local product directories. You will
typically only work in DEVAREA/srcs/, while mrb will use the other
directories in the background. The only exception to this is a setup
script in the local products area which must be sourced now:

source localProducts_gm2_vXX/setup

This sets up the environment to prefer local versions of some pack-
ages (instead of relying on the precompiled version in /cvmfs). NOTE:
This step must be run for every new login session as it modifies the
shell environment.

3.3 Checking out and building code

The development area is now set up, though it contains no source code
to build. To download the source code for a software package and set
it up to work within the g− 2 ecosystem, move to DEVAREA/srcs/ and
use mrb to check out code for that package:

cd srcs
mrb gitCheckout PACKAGE

where PACKAGE is replaced with the desired package name (e.g.
artg4, gm2ringsim, etc.). This creates a subdirectory named
DEVAREA/srcs/PACKAGE. If you need to check out multiple pack-
ages, run mrb gitCheckout PACKAGE for each, always from the
DEVAREA/srcs/ directory.5 5 If you must use git flow to check

out a feature branch for a particular
package, you have to cd PACKAGE in
order to run the git command in the
DEVAREA/srcs/PACKAGE subdirectory.

Now that the source code is in place, we finish setting up the build
environment for mrb:

source mrb setEnv

developer workflow 17

This parses all of the product_deps files for your packages and de-
termines dependencies. It then sets then all up from ups (e.g. geant4).
You must run this command every time you start or resume a develop-
ment session (e.g. log out and back in again later). You should not see
any errors.

3.3.1 Building for the first time

When you have no build products at all in your build directory
($MRB_BUILDDIR), start the build with

mrb b

That will run cmake6 and then make7 to build your code. The build 6 See http://www.cmake.org/ for more
information.
7 make is the standard build tool that
determines dependencies, build or-
der, and issues the commands. make
uses Makefiles for configuration and
construction. These Makefiles are
extremely difficult to write correctly.
cmake is a tool with a simpler configu-
ration language that will write all of
the Makefile’s for us.

will stop if there are any cmake, compilation, or linker errors.

3.3.2 Running tests

If packages you are building contain tests, you can run them with,

pushd $MRB_BUILDDIR # cd to that directory and push to stack
ctest -j N # N is number of CPU cores
popd # Change back to old directory

Where N is equal to or less than the number of cores on your ma-
chine (use 1 for gm2gpvm; a newer Mac laptop may have as many as 8
cores). The -j option is optional, but if you give it the tester can run
tests in parallel and will be much faster. Your current directory must
be $MRB_BUILDDIR.

If a test fails, look in $MRB_BUILDDIR/Testing/Temporary for log
files.

3.3.3 Re-building incrementally

When you make a change to your code, you need to build it again (an
incremental build). The build system can figure out what has changed
and only rebuild the modified code and anything that depends on it.
You can do this by re-running mrb b. Note that this will re-run cmake
perhaps unnecessarily. See below for faster ways to rebuild.

3.4 Incremental rebuilds

If you have not changed any CMakeLists.txt files and you have
not added any new header files, you can skip the cmake step on an
incremental re-build by doing,

pushd $MRB_BUILDDIR # cd to that directory and push to stack

18 offline computing and software manual [gm2 v6_03_00]

make -j N # N is number of CPU cores
popd # Change back to old directory

This may still take a minute or two as make has to check each
directory for changes (see below for faster methods). Use -j to specify
the number of cores on your machine to do builds in parallel. On
gm2gpvm, leave off the -j since there is only one core.

3.4.1 Incremental rebuild (super-fast but potentially dangerous)

When make runs, it tells you the target that is building. If you know
the name of the target for your build, you can tell make to only make
that target. For example,

pushd $MRB_BUILDDIR # cd to that directory and push to stack
make gm2artexamples_Lesson2_makeRotatedHits_module
popd # Change back to old directory

This technique is somewhat dangerous, as make will not build other
targets that depend on the one you have changed, possibly leading to
an inconsistent and incorrect build. But, if you are changing an art
module which cannot have downstream dependencies, then you are safe
in only building that module’s target.

This partial build is very fast, as you are telling make to only build a
very small part of the codebase.

3.4.2 Building with ninja (amazingly fast and apparently safe)

ninja 8 is a build system that replaces make. Fortunately, just as 8 See http://martine.github.io/ninja/
cmake knows how to create the files necessary for make, cmake also
knows how to create the files for building with ninja. ninja works on
all platforms.

The advantage of ninja over make is that if you do an incremental
build, ninja can determine what files need compiling in practically zero
time.

For example, if you do a full build, and then do an incremental build
(with mrb b) changing nothing, the build will take quite awhile to
figure out that there is nothing to do. That is because make needs to
check each directory for updated files. Somehow, ninja figures this out
a different way.9 9 I think ninja polls the file system

event logger to determine what files
were updated and it will return
instantaneously.

Compiling and linking takes time, of course, but you will get there
much faster.

Though I have done builds with make and ninja and see no prob-
lems with using ninja, currently ninja is experimental and you will
have to follow some extra steps to use it.

developer workflow 19

First build with ninja
ninja replaces make. You can decide to use ninja for your build

directory. If you’ve already done a build with make, you must zap it
(delete it with mrb z; . mrb s) and then redo the full build with
ninja. Once you’ve built with ninja, you must zap again to go back
to make for that build directory. The upshot is that you cannot freely
switch between make and ninja for a build directory.

Because ninja is experimental, you must set it up explicitly. Before
running the build, do (you will need to do this each time you log in),

setup ninja v1_5_3a

Now, you need to do a full build with,

. mrb s
mrb b --generator ninja

You won’t see much speed up here, as this is a full build. The speed
up occurs for incremental builds.

Incremental builds with ninja
You must have done a full build with ninja as described in the

previous section. If you have logged out and logged back in in the
meantime, re-run the setup ninja command above.

Now when you change some code and want to do an incremental
build, do

pushd $MRB_BUILDDIR # cd to that directory and push to stack
ninja # The magic happens
popd # Change back to old directory

ninja will figure out the number of cores you have. ninja will
determine all of the files that need to be re-compiled and linked with
almost no overhead.

4
Using a Mac for Development

Information and instructions for developing and running g− 2 code on
the Mac has moved to its own document. See GM2-doc-2459.

http://gm2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=2459

5
Running the simulation

This section gives you very brief instructions on how to build and
run the gm2ringsim simulation. More details will be coming in future
versions of this document.

Be sure you are familiar with the basics in section ??.

5.1 Component packages in the simulation

Our simulation code is made up of four packages:

• artg4 - serves as the interface between the art framework and
geant4.

• gm2geom - a prototype geometry server
• gm2dataproducts - data products used for emitted by the simula-

tion
• gm2ringsim - the simulation code itself

5.2 Using a base release

See section 11.6 for the meaning of point and base releases. The
base release (e.g v5_00_00) only has libraries and executables for the
external programs. Therefore to run the simulation from a base release,
you must build all of the component packages yourself.

5.3 Using a point release

See section 11.6 for the meaning of point and base releases. With a
point release, you may use some or all of the component packages out
of the release instead of building them yourself. You should check the
CHANGELOG (e.g. less $GM2RINGSIM_DIR/CHANGELOG) to make sure
that the packages were built with the features you want. If so, then
simply run a FCL file with gm2; no need to build anything or even set
up a development area.

24 offline computing and software manual [gm2 v6_03_00]

If you need to build a package because you want to run something
even newer than what was released or you have changes, then follow
the dependency tree. In section 5.1, we see the list of components.
This was purposefully written to show dependencies from bottom
up. E.g. gm2ringsim is at the bottom. If you only need to change
gm2ringsim then you only need to checkout out and build your version
of gm2ringsim. gm2ringsim depends on gm2dataproducts, so if you
change something in gm2dataproducts you will need to checkout and
build gm2dataproducts and gm2ringsim. So the way to read that list
of components in section 5.1 is that if you change and build a package,
you must also change and build everything below it on the list.

5.4 FCL files for the simulation

There are many fcl files that you can use to run the simulation. Here’s
a list of some of them,

BeamDiagnosticMuPlus.fcl Shoot individual muons that go around
the ring with a rudimentary particle gun with the fiber harp de-
ployed.

BeamDiagnosticMuPlusMuonGasGun.fcl Simulation with fiber harp
deployed using the gas gun. The gas gun makes muons randomly
appear in the ring right before decay.Since geant does not track
muons around the ring, this is a very fast simulation.

ProductionMuPlus.fcl Shoot individual muons that go around the
ring with the ring in data taking state (e.g. no fiber harp).

ProductionMuPlusMuonGasGun.fcl Same as above, but using the
muon gas gun. Very fast simulation.

beamtransport_gun.fcl Muons are not tracked around the ring.
Instead, the position and momentum of the muon is calculated using
the beam equations of motion and the muon appears in the ring just
before it decays. A very accurate and fast simulation.

inflector_gun.fcl A very slow but accurate simulation of muons
going through the inflector and around the ring.

6
Running Jobs on the Grid

In this section you will learn how to run your jobs on the grid at
Fermilab. You can either run the latest code that is released, or you can
run from a local release.

For official simulation runs you should make sure you are running the
code out of a release. If you are doing some tests and need a certain
configuration, for example you put trackers in all 24 slots because you
want specifically to see information about tracking and could use more
tracker events, then you would run out of a local release.

6.1 First Learn about jobsub

Before going in to the details on what we will do specifically for g− 2 it
would be good to understand a little bit about jobsub. There are lots of
details here: https://cdcvs.fnal.gov/redmine/projects/jobsub/wiki and
this PDF is a good overview:

https://fermipoint.fnal.gov/project/FIFE/Shared%20Documents/FIFE_Jobsub_tutorial.pdf.

6.2 Output location

Before starting with the grid you’ll need a place for the output
to go. You will use an area on /pnfs/. You will put your stuff in
/pnfs/GM2/scratch/users/your_fnal_user_name (Using your Fermi-
lab username will help if you choose to use scripts provided to run your
jobs).

After testing your output and verifying it, it will be moved over
to a taped back location. [This information will be added when we
have some official data/simulation we want to save]. See the following
section for information on how to analyze your output using SAM.

Let’s get to creating your data!

26 offline computing and software manual [gm2 v6_03_00]

6.3 Generating Data

This is very simple!
Log into your favorite gm2 machine and do the following:

source /cvmfs/gm2cfs.fnal.gov/prod/g-2/setup

Followed by the version you want to run. For example:

setup gm2 v6_01_00 -q prof

Go to your /gm2/app/users/username area and create an area to
run your jobs from.

Now you want to set things up so that you can run on the grid:

source /grid/fermiapp/products/common/etc/setups.sh
setup jobsub_client

There are three scripts that you can use for submissions located here:
/gm2/app/users/leah/submitGridJobs/. They will be in git soon.

6.4 gridSetupAndSubmit.sh

This file sets things up for the producitng. Following are descriptions of
the variables that are set in this file:

• SCRATCH_DIR: sets things up so your output will go to the pnfs area:
/pnfs/GM2/scratch/users/username/NOW

• since $USER is a environment variable you can just use it in the
script which is why it was suggested you name the area on pnfs with
your user name.

• If you want a different directory structure that’s to your discretion.
• MAINFCLNAME: whatever fcl file you want to run.
• NEVTSPERJOB: how many events in each submission you plan on

running
• NJOBS: how many of such jobs
• [Each are set to be 1 as a way to test things before submitting

thousands of events/jobs]*

To actually submit the job, run the jobsub command and send in
either the submit-release.sh or submit-localrelease.sh. See below for the
differences between these files.

You give it the following options:

• -N: Number of jobs
• -G: gm2 (for our group name)
• -M: Asking to send me an email when the job finishes

running jobs on the grid 27

• --OS: SL6 (use only Scientific Linux 6 machines)
• --resource-provides:
• --role: Analysis
• This is all you have permission for right now, eventually Production

will be used as well.
• file: This is the actual script that will submit to the grid. Note

that after the file are more variables that have been previously set.
These are variables that the script is going to use. If your script
doesn’t have such things they aren’t necessary.

6.5 submit-release.sh

The only thing in this file that you have to change is the release you
want to use (ex: setup gm2 v6_01_00 -q prof):

6.6 submit-localrelease.sh

There are just a few extra steps if you want to run some jobs based on
some code you have in a local area.

IMPORTANT: First you have to install the local products. This is
simple just: mrb i

Once you do this, then when you run the job on the grid you’ll have
to setup your local products and that can’t be done if you don’t first
install them. The only difference from running from an official release
and a local release setting up your local area instead of the offical
release:

ex: source /gm2/app/users/leah/gm2Dev_v6_01_00/localProducts_gm2_v6_01_00_prof/setup
Followed by setting up the local products: . mrb slp

7
Storing Data and Using SAM

In this section you will find information on how to add your data to the
SAM (Sequential Access via Metadata) database.

7.1 What is SAM?

Simply speaking, SAM is a data handling system. As physicists we are
going to produce a large amount of data and simulation that needs
to be organized. Keeping this data in folders on hard drives is not a
scalable option. And even if it was, it’s hard to find data once it’s in
those nested folders. SAM indexes all the data is has by meta-data
and is agnostic to the location of the files. Making it easier for you, the
user.

So generally SAM does it all:

• Keeps track of the locations of files on tape and disk.
• Handles file meta-data so users do not need to know the file name to

find data of interest
• Delivers files without users having to know where they come from
• Bookkeeping: keeps track of datasets created and files processed

while analyzing output.

So, the first thing we are going to have to do is make some datasets
that we can use.

7.2 File Locations

Before you get started, you’ll need a place to store your data. We will
store all the data in the /pnfs/ system. To start with we are going
to use the scratch area: /pnfs/GM2/scratch/users/yourUserName
Eventually if you don’t touch files here for a few months they will
disappear. If you are continually using them then there is no problem.
If you know your files are good and something you want forever,
they will go to a taped back location. This is simply any area under

30 offline computing and software manual [gm2 v6_03_00]

/pnfs/GM2/ that isn’t under scratch. More information coming on
this, please don’t (at this point) put anything on tape.

7.3 User Datasets

A user defined dataset is just what it sounds like it. It’s a set of data
which has common attributes (meta-data) defined by the user.

You will be able to refer to this dataset, when you want to run an
analyzer, by name instead of worrying about where all the files are.
Because really you don’t care where they are, you just care about what
they contain in them.

NoVA has some good documentation available that is summarized
below: https://cdcvs.fnal.gov/redmine/projects/nova_sam/wiki/User_Datasets

7.3.1 Setup

Before you start doing anything you’ll need the FIFE Utilities package.
Set this up by doing:

>setup fife_utils v2_X [The NoVA link is updated for the latest
version of the fife_utils]

You also have to make sure you have a X509 certificate. Get one of
these by doing the following two commands

>kinit

>kx509

You’ll need an environment variables set:

>export SAM_EXPERIMENT=gm2

7.3.2 sam commands and sam_web

Now you should have access to SAM commands:

• sam_add_dataset: makes a new dataset
• sam_retire_dataset: retires a dataset
• sam_validate_dataset: validates that all the files are present, or

which aren’t
• sam_clone_dataset: Makes a replica of a dataset in a different

location.
• sam_unclone_dataset: Removes the replicas of a dataset in a

specific location
• sam_modify_dataset_metadata: Applies or modifies the metadata

associated with a dataset

As well as samweb. Find what’s available in samweb by typing:

samweb --help-commands

storing data and using sam 31

7.3.3 Creating a Dataset

Finally what we want to do. Creating a dataset out of our data that
we’ve produced.

Something you’ll want to take into consideration when creating
your dataset. Name it something that is human readable. For exam-
ple: lwelty_muplus_062415_gm2v60100. Not things like: my_data,
my_good_data, use_this_dataset.

Onward, create that dataset. From a directory where your files are:

sam_add_dataset -d <path to file> -n <name of dataset>

For example:

sam_add_dataset -d . -n leahtestdata

Great! That’s it. You will notice that if you do an ls on your files
they will have changed names. By creating a data definition, the names
of the files have a prepended hash on the original file name. So for
example:

gm2ringsim_ProductionMuPlusMuonGasGun_2207507.6.root

becomes

3610444f-f452-4713-a191-907863dd9cc3-gm2ringsim_ProductionMuPlusMuonGasGun_2207507.6.root

This is done because files in SAM cannot have the same name. So
this guarantees uniqueness of file names. And we don’t really care what
the file names are because now you can refer to them simply by your
dataset definition name (in my example case, leahtestdata).

7.4 Running over a Dataset

There are scripts in the gm2analyses/ProductionScripts/analyze
area that will allow you to run on your SAM datasets. To run simply:

• ./analyzeSAMDataset.sh SAM_datasetname [analyzer(fcl filename)]
[fermilab_username]

• It will run a default of the AllHits.fcl file as the analyzer, but you
can either give the script the analyzer you want to run on the
command line, or just change it in the script itself.

• The output files will show up in gm2analyses/output/

7.5 Automatic SAM Database population

coming soon.

8
Writing Source Code

Warning: This section needs to be reviewed and cleaned up.
Your source code lives within a git project checked out to your de-

velopment area’s srcs directory. The project has a top level directory1 1 For example, the gm2ringsim
project would get checked out to
srcs/gm2ringsim, which is the “top
level” directory.

that contains the “top level” CMakeLists.txt file along with various
subdirectories. Code with a common purpose should live in a particular
subdirectory.2 You may mix headers (.h, .hh), implementation (.cc, 2 Examine gm2ringsim for more

examples..cpp), and configuration (.fcl) files all in the same subdirectory.

8.1 Top level CMakeLists.txt file

The top level CMakeLists.txt file lives in your top level project
directory (e.g. srcs/gm2ringsim/CMakeLists.txt). It has the main
directives that tells CMake how to build your project.

Below is a representative top level CMakeLists.txt file.3 The 3 There are five main parts of the file
(roughly in order in the file)...
• Defining the project
• Loading CMake macros and setting

the CMake environment
• Setting compiler options
• Specifying external packages that

will be used
• Specifying subdirectories that

contain a CMakeLists.txt file and,
perhaps, code to build

mrb newProduct command will create a skeleton file for you.
1 # Ensure we are using a moden version of CMake
2 CMAKE_MINIMUM_REQUIRED (VERSION 2.8)

4 # Project name - use all lowercase
5 PROJECT (gm2analyses)

7 # Define Module search path
8 set(CETBUILDTOOLS_VERSION $ENV{CETBUILDTOOLS_VERSION})
9 if(NOT CETBUILDTOOLS_VERSION)

10 message(FATAL_ERROR
11 "ERROR: setup cetbuildtools to get the cmake modules")
12 endif ()
13 set(CMAKE_MODULE_PATH $ENV{CETBUILDTOOLS_DIR }/ Modules
14 ${CMAKE_MODULE_PATH})

16 # art contains cmake modules that we use
17 set(ART_VERSION $ENV{ART_VERSION})
18 if(NOT ART_VERSION)
19 message(FATAL_ERROR
20 "ERROR: setup art to get the cmake modules")

34 offline computing and software manual [gm2 v6_03_00]

21 endif ()
22 set(CMAKE_MODULE_PATH $ENV{ART_DIR }/ Modules
23 ${CMAKE_MODULE_PATH})

25 # Import the necessary macros
26 include(CetCMakeEnv)
27 include(BuildPlugins)
28 include(ArtMake)
29 include(FindUpsGeant4)

31 # Configure the cmake environment
32 cet_cmake_env ()

34 # Set compiler flags
35 cet_set_compiler_flags(DIAGS VIGILANT WERROR
36 EXTRA_FLAGS -pedantic
37 EXTRA_CXX_FLAGS -std=c++11
38)

40 cet_report_compiler_flags ()

42 # Set include and library search paths (the version numbers
43 # are minimum - if actual version of product is below specified ,
44 # will get error)

46 # Everyone should include these
47 find_ups_product(cetbuildtools v3_07_08)
48 find_ups_product(art v1_08_10)
49 find_ups_product(fhiclcpp v2_17_12)
50 find_ups_product(messagefacility v1_10_26)

52 # This project uses code from gm2ringsim ,
53 # gm2dataproducts , and gm2geom
54 find_ups_product(gm2ringsim v1_00_00)
55 find_ups_product(gm2dataproducts v1_00_00)
56 find_ups_product(gm2geom v1_00_00)

58 # This project uses code from Root
59 find_ups_root(v5_34_12)

61 # Make sure we have gcc
62 cet_check_gcc ()

64 # Macros for art_make and simple plugins (must go after
65 # find_ups lines)
66 include(ArtDictionary)

68 # Specify subdirectories to build
69 add_subdirectory(ups) # Every project needs a ups subdirectory
70 add_subdirectory(DisplayDataProducts)
71 add_subdirectory(calo)

writing source code 35

72 add_subdirectory(fcl)
73 add_subdirectory(test)
74 add_subdirectory(util)

76 # Packaging facility - required for deployment
77 include(UseCPack)

8.1.1 When you need to add/change a line in top level CMakeLists.txt

There are two situations for which you will have to alter the top level
CMakeLists.txt file:

If you add, delete, or rename a subdirectory If you add a subdirec-
tory, you must write a corresponding add_subdirectory(dirName)
directive.4 If you delete a directory, you must remove its corresponding 4 The add_subdirectory directory tells

CMake to go into that subdirectory
and build code there. If you don’t have
the add_subdirectory then CMake
won’t look in the subdirectory at all.

add_subdirectory line. If you rename a directory, you must edit its
corresponding add_subdirectory line to reflect the change. If you do
not follow these steps, then some code may not build (without an error,
so this mistake will be hard to find) or you may get an error when
CMake tries to build a directory that no longer exists.

You use code from an external project If you use code from an exter-
nal project, you may need to add a corresponding find_ups_product
or similar line.5 5 See section 8.8 for instructions.

8.2 Organizing Source Code

The build system we use is quite flexible and you can organize your
code in many ways. You may be used to having all of your header
files in an include directory with the .cc files in other directories.
This artificial separation is unnecessary. You may group files together
any way you like and may have header files and implementation files
in the same directory. Typically, it is best to group files by topic or
functionality.

8.3 Writing Modules

Modules are plugins to art that perform certain functions (analyzers,
producers, filters, and output modules). See section 10 of the Art Work
Book6 for more information. Only reminders will be given here. 6

You should use artmod to write the skeleton of the module. Do
artmod --help-types to see the list of module types it will make.
Then just run it, giving the name of the class you want including any
namespace specification. For example,

36 offline computing and software manual [gm2 v6_03_00]

1 artmod producer tracking:TrackFinder
2 artmod analyzer gm2analysis :: CalorimeterDiags

Remember that you specify the class name, not the file name (so do
not give _module in the name).

8.4 Writing Services

TODO

8.5 Writing Input Source Modules

TODO

8.6 Directory level CMakeLists.txt file

If your subdirectory (e.g. srcs/gm2analyses/strawTracker) has
anything to build, has header files, or has further subdirectories,
then it must have a CMakeLists.txt file (and a corresponding
add_subdirectory line in the CMakeLists.txt from the directory
above - see Sec. 8.1.1).7 If your subdirectory has code to build, then the 7 The directory level CMakeLists.txt

file is different from the top level
CMakeLists.txt file. The latter is in
your project top level directory, like
srcs/gm2analyses. The former is in a
subdirectory of that top level and is
described in this section.

directory CMakeLists.txt file needs to have

1 art_make()

A directory with no .cc or .cpp files has no code to build and so
does not get an art_make line in the directory CMakeLists.txt file.

See the next section (Sec. 8.6.1) for arguments to the art_make. You
should call art_make only once per CMakeLists.txt file.

If your subdirectory has header files, then those have to be copied to
the release area when one runs mrb install. To do that, you need a
line the directory CMakeLists.txt file with

1 install_headers() # No arguments

If your subdirectory has fcl files, then those need to be copied to the
build area as well as the release area. There is some scripting involved
to do that (put the following in the directory CMakeLists.txt file),

1 # install all *.fcl files in this directory to the release area
2 file(GLOB fcl_files *.fcl)
3 install(FILES ${fcl_files}
4 DESTINATION ${product }/${version }/fcl)

6 # Also install to the build area
7 foreach(aFile ${fcl_files })
8 get_filename_component(basename ${aFile} NAME)
9 configure_file(

10 ${aFile} ${CMAKE_BINARY_DIR }/${product }/fcl/${basename}

writing source code 37

11 COPYONLY)
12 endforeach(aFile)

If your subdirectory has futher subdirectories with code to build,
then you need an add_subdirectory(dirName) line for each subdi-
rectory.

8.6.1 Arguments to art_make

You can find documentation for art_make in its source code at
$ART_DIR/Modules/ArtMake.cmake. Basically, you need to specify

what libraries to link against when you use external code.8 If you don’t 8 See Sec. 8.8 for how to tell if you are
using external code.use any external code, then you will have no arguments to art_make. It

will tell CMake to build all regular source, modules, services, and input
sources in the directory. If you do use external code, then you have four
choices,

• If the source file using external code is a regular source (not a
module, not a service, not an import source), then you need

1 art_make(
2 LIB_LIBRARIES
3 library1
4 library2 # if needed
5)

• If the source file using the external code is a module source
(e.g. analyze_my_hits_module.cpp) then you need

1 art_make(
2 MODULE_LIBRARIES
3 library1
4 library2 # if needed
5)

• If the source file using the external code is a service source
(e.g. analyze_my_hits_service.cpp) then you need

1 art_make(
2 SERVICE_LIBRARIES
3 library1
4 library2 # if needed
5)

• If the source file using the external code is source code for an input
source
(e.g. midas_source.cpp) then you need

38 offline computing and software manual [gm2 v6_03_00]

1 art_make(
2 SOURCE_LIBRARIES
3 library1
4 library2 # if needed
5)

If you have a mixture of sources in your directory, you can string the
calls together. For example,9

9 In the example to the left, regular
sources get linked against Root’s
libGpad.so (see Sec. 8.8.2) and
modules get linked against code built
in the srcs/gm2analyses/util and
srcs/gm2analyses/strawtracker/util
directories (see Secs. 8.8.4 and 8.8.5).

1 art_make (
2 LIB_LIBRARIES
3 ${ROOT_GPAD}
4 MODULE_LIBRARIES
5 gm2analyses_util
6 gm2analyses_strawtracker_util
7)

Note that it does not hurt for code to build against a library that it
doesn’t need. So if you have five modules and only one needs to link
against a library, put that library in the MODULE_LIBRARIES section.
The one that needs it will link against it and the four that don’t won’t
care.

8.7 Libraries produced from building

Every directory in your project that has code to build generates at
least one library.10 Say, for example, you have a directory called

10 An important note, if your directory
only has header files in it (should
be a rare situation for code written
by users), then no library will be
produced (because there is no code to
build - the header files are all included
by other source code). You still need
the directory level CMakeLists.txt file
for the install_headers() directive,
but do not do art_make. See Sec. 8.6.

gm2analyses/calo. Regular sources (not modules, services, nor in-
put sources) get compiled and the objects go into a library called
libgm2analyses_calo.so (the name is the directory path with slashes
replaced by underscores). Each module in the directory gets its own
library. For example, if there is a module in that directory called
Analyze_Calo_module.cc then that code will go into a library called
libgm2analyses_calo_Analyze_Calo_module.so. A similar thing
happens for services and input sources. Therefore, one directory of code
may produce several libraries. The art_make directive in the directory
CMakeLists.txt file tells the build system to build code and make the
corresponding libraries.

8.8 Using External Code (Linking)

Your code is almost never self-contained, especially when writing within
the Art framework. You may use functions and classes from external
libraries, like Root and Geant4. You may use algorithms, data products,
and other functionalities from other projects, like gm2ringsim. You

writing source code 39

may use objects defined in other directories in your project. If you are
writing an art module or service, you may use objects defined in the
same directory, but in a different file from the module or service. All of
these examples are “external code”.

Art uses dynamic linking, which means that the art executable
(ours is called gm2) has very little code in it. Instead, it loads all of the
libraries it needs at runtime. The other style is static linking where the
executable has embedded in it all of the libraries it needs. Dynamic
linking, as the name suggests, allows for flexibility with one executable
able to load a variety of different libraries decided upon at runtime
with the configuration file. There is, however, overhead in dynamic
loading typically experienced as slow start-up time of the program.
Static linking produces an executable with all of the libraries built in
- so there is little flexibility in terms of functionality. But the start up
time is much faster. Static linking typically leads to many copies of
executables for the different functionalities, resulting in duplication
of libraries that are in common. For maximum flexibility and non-
duplication of libraries, art loads everything dynamically.

How do you know when you are using external code?
An easy indicator is when you have a #include for a header file. For
each #include, you need to think and perhaps add a corresponding link
directive in a CMakeLists.txt file.11 If you forget to link to a library

11 Remember the two types of
CMakeLists.txt files: “top level”
and “directory level”. The former
(see Sec. 8.1) is the potentially big
file at the top level of your project.
The latter (see Sec. 8.6) is the smaller
file in the directory with your actual
source code files.

that you need, you will get a missing symbol error when you try to run.
This section will explain how to figure out these situations and actions
you need to take.

8.8.1 Includes for system headers and base art headers

System headers, like #include <string> do not require any special
directives for linking. You get them for free.

Headers in art, fhiclcpp, and messagefacility do not require
anything in your directory level CMakeLists.txt file. The correspond-
ing libraries are automatically loaded by the art executable. Your top
level CMakeLists.txt file must contain the following lines,12

12 These lines add header file direc-
tories to the compiler include search
path (e.g. without them, you will get
a compilation error that header files
cannot be found).

1 ...
2 cet_report_compiler_flags ()
3 ...
4 find_ups_product(art v1_08_10)
5 find_ups_product(fhiclcpp v2_17_12)
6 find_ups_product(messagefacility v1_10_26)
7 ...

40 offline computing and software manual [gm2 v6_03_00]

8.8.2 Includes for Root headers

Including a header from Root is a little unusual because you do not
have to give a path in the include, e.g. #include "TCanvas.h" (not
#include "root/TCanvas.h"). If you include a header from Root, you
will also need to link to the corresponding Root library. First, in the
top level CMakeLists.txt file, you must have,13

13 That find_ups_root line adds
the Root headers to the compiler
include search path and creates CMake
variables corresponding to each Root
library.

1 ...
2 cet_report_compiler_flags ()
3 ...
4 find_ups_root(v5_34_12)
5 ...

If you look at the code for the find_ups_root CMake macro at
$CETBUILDTOOLS/Modules/FindUpsRoot.cmake you will see lines

like,14

14 These lines define the CMake vari-
ables that correspond to Root libraries.
You use them in the directory level
CMakeLists.txt file to tell CMake to
link against that library.

1 find_library(ROOT_GLEW NAMES GLEW PATHS ${ROOTSYS }/lib
2 NO_DEFAULT_PATH)
3 find_library(ROOT_GPAD NAMES Gpad PATHS ${ROOTSYS }/lib
4 NO_DEFAULT_PATH)
5 find_library(ROOT_GRAF NAMES Graf PATHS ${ROOTSYS }/lib
6 NO_DEFAULT_PATH)
7 find_library(ROOT_GRAF3D NAMES Graf3d PATHS ${ROOTSYS }/lib
8 NO_DEFAULT_PATH)

To determine the Root library you need, look up the Root object
in the Root documentation at http://root.cern.ch/drupal/content/
reference-guide (select the appropriate version of Root - usually the
PRO version). Find the class name from the list and click on it. On
the new page, on the very right hand side in a little greyed out box it
will say the library that corresponds to that Root object. For example,
if you #include "TCanvas.h" you need to link against the libGpad
library. The CMake variable name will in general be the name of the
library, all upper case, with the lib replaced by ROOT_. So libGpad →
${ROOT_GPAD}.

In your directory level CMakeLists.txt file, you will have the
art_make directive. Add the appropriate CMake variable corresponding
to the Root library you need. See Sec. 8.6.1 for where to put such items
in the arguments. For example,15

15 In the example left, regular sources
are linked against libGpad.so while
modules are linked against libTree.so
and libTVMA.so.

1 art_make (
2 LIB_LIBRARIES
3 ${ROOT_GPAD}
4 MODULE_LIBRARIES
5 ${ROOT_TREE}
6 ${ROOT_TVMA}

http://root.cern.ch/drupal/content/reference-guide
http://root.cern.ch/drupal/content/reference-guide

writing source code 41

7)

8.8.3 Includes for GEANT headers

To include a header file from Geant4, requires you to have Geant4/
in the header path, for example #include "Geant4/G4Track.hh". If
you include such headers in your code, then you will also need to link
against the Geant4 libraries. First, in your top level CMakeLists.txt
file, you must have,

1 ...
2 cet_report_compiler_flags ()
3 ...
4 find_ups_geant4(v4_9_6_p02)
5 ...

That line adds the Geant4 headers to the compiler include
search path and creates the CMake variables ${G4_LIB_LIST} and
${XERCESLIB}. For any Geant4 header, just add those CMake variables
to the art_make directive in your directory CMakeLists.txt file. See
Sec. 8.6.1 for where to put such items in the arguments. For example,
srcs/gm2ringsim/calo/CMakeLists.txt has, in part,16

16 If you are curious, you can see
where G4_LIB_LIST is defined in
$CETBUILDTOOLS_DIR/Modules/FindUpsGeant4.cmake.
XERCESLIB goes with Geant.

1 art_make(
2 LIB_LIBRARIES
3 gm2geom_calo
4 gm2geom_station
5 artg4_material
6 artg4_util
7 ${XERCESCLIB}
8 ${G4_LIB_LIST}
9 SERVICE_LIBRARIES

10 gm2ringsim_calo
11)

8.8.4 Includes for headers in the project

The #include directive should include the path to the header file,
including the name of the project even if the header is in the same
directory as the source, though you could just give the header file name.
For example, if CaloHitSD.hh is in the gm2ringsim/calo directory,
then CaloHitSD.cc, when it includes CaloHitSD.hh, can do either

1 #include "CaloHitSD.hh"

or

1 #include "gm2ringsim/calo/CaloHitSD.hh"

42 offline computing and software manual [gm2 v6_03_00]

The latter is preferred as it is clearer, but if you change the name of
the directory, you must change the include as well.

If you have a regular source file and it includes a header that is
present in the same directory, then you do not need to do anything
to the CMakeLists.txt files. If you have a module, service, or input
source file and it includes a header that is present in the same directory,
then you need to link against the library for that directory. You do
not need to add anything to the top level CMakeLists.txt file. To
the directory CMakeLists.txt file, you must add the library. See
Sec. 8.6.1 for where to put such items in the arguments. For example,
srcs/gm2ringsim/calo/CMakeLists.txt has, in part,17

17 In the left example, services in
that directory are linked against
the library that gets created
from the regular sources, namely
libgm2ringsim_calo.so. You can
predict the name of the library by
taking the source directory (e.g.
gm2ringsim/calo) and replacing the
slashes by underscores.

1 art_make(
2 LIB_LIBRARIES
3 gm2geom_calo
4 gm2geom_station
5 gm2ringsim_station
6 artg4_material
7 artg4_util
8 ${XERCESCLIB}
9 ${G4_LIB_LIST}

10 SERVICE_LIBRARIES
11 gm2ringsim_calo
12)

If any source file uses a header that is present in a different directory
in your project, then you must link against that library. In the example
above, code in the gm2ringsim/calo directory includes code from
gm2ringsim/station, and hence gm2ringsim_station is present in
the arguments of art_make.

An important exception to these instructions is if the directory with
the header file contains only header files. In that case, that directory
produces no libraries and you do not have to change the directory
CMakeLists.txt file.

8.8.5 Includes for headers in other projects

If you have a source file (regular, module, service, or input source)
that uses code from another project, then you need to do some work.
An example here is code in gm2ringsim uses code from the gm2geom
and artg4 projects. The #include needs the path to the header file
including project name, directory name and header name. For example,
#include "artg4/util/util.hh".

In your top level CMakeLists.txt file, you need a find_ups_product
line for the project specifying the project name and a minimum version
number. See Sec.8.1 for an example.

writing source code 43

In your directory CMakeLists.txt file, you need to list the library
corresponding to the code you are using. See Sec. 8.6.1 for where to put
such items in the art_make arguments. For example,
srcs/gm2ringsim/calo/CMakeLists.txt has, in part,

1 art_make(
2 LIB_LIBRARIES
3 gm2geom_calo
4 gm2geom_station
5 artg4_material
6 artg4_util
7 ${XERCESCLIB}
8 ${G4_LIB_LIST}
9 SERVICE_LIBRARIES

10 gm2ringsim_calo
11)

When the regular sources are built, they will be linked against
code in gm2geom/calo, gm2geom/station, artg4/material, and
artg4/util.

An important exception to these instructions is if the directory
with the header file contains only header files. In that case, that
directory produces no libraries and you do not have to change the
directory CMakeLists.txt file. You still need to have the top level
CMakeLists.txt file correct as described above.

9
Things You May Do in Your Code

This chapter contains some reminders of common things you do in
Muon g− 2 code.

9.1 Dealing with parameters

The constructor for your module or service has the parameter set as
an argument. You can retrieve information from the parameter set and
supply defaults if the parameter does not exist as in the example below.

1 gm2ex :: CalorimeterDigitizer :: CalorimeterDigitizer(
2 fhicl :: ParameterSet const & p) :
3 category_ (p.get <std::string >("category","digi")),
4 TAURAMP_ (p.get <float >("TAURAMP", 1.4 /* ns */)),
5 TAUDECAY_ (p.get <float >("TAUDECAY", 36.4 /* ns */)),
6 PULSELENGTH_ (p.get <int >("PULSELENGTH", 30 /* samples */)),
7 // ...

9.2 Readling enviornment variables

1 #include <cstdlib >
2 // ...
3 std:: string value = std:: getenv("PATH '');

The argument to std::getenv is a constant character array, not a
std::string.
9.3 Throwing an exception

See http://mu2e.fnal.gov/public/hep/computing/exceptions.shtml.

1 #include "cetlib/exception.h"
2 // ...
3 if (something) {
4 throw cet:: exception(CATEGORY) << "Message\n"

http://mu2e.fnal.gov/public/hep/computing/exceptions.shtml

46 offline computing and software manual [gm2 v6_03_00]

5 }

9.4 Finding a file

cetlib has a nice facility for searching for files in a path specification.
See $CETLIB_INC/cetlib/search_path.h.

It may be convenient to specify the search path in a FHICL param-
eter with the possibility of providing an environment variable. Here
is some code that takes a search path through the parameter, but if
the first character is a $, it then gets the path through the specified
environment variable.

1 gm2util :: MetadataFromFile :: MetadataFromFile(
2 fhicl :: ParameterSet const & p) :
3 searchPath_ (p.get <std::string >("searchPath", ".")),
4 fileName_ (p.get <std::string >("fileName")),
5 keyName_ (p.get <std::string >("keyName"))
6 {
7 // Let 's parse the search path
8 // If the first character is a dollar sign , then the
9 // remaining is an environment variable

10 if (searchPath_.at(0) == "$") {
11 std:: string envVar = searchPath_.substr (1);
12 char* envValue = std:: getenv(envVar.c_str ());
13 if (! envValue) {
14 searchPath_ = ".";
15 throw cet:: exception("META_DATA_FROM_FILE") <<
16 "Environment variable " << envVar << " is not set";
17 }

19 searchPath_ = std:: string(envValue);
20 }
21 }

10
Frequently Asked Questions

Some questions are answered here that didn’t seem to fit in other
sections.

Where is the art source code? The art source code1 for a particular 1 Never use the source code directory
for an #include in your code. Instead,
just use #include "art/whatever.h"
and the build system will find it in
$ART_INC.

gm2 release is accessible in our release area for you to peruse. Set up
the release (see section 3.1) and look in $ART_DIR/source/art.

My SSH login to gm2gpvmNN.fnal.gov dies sometimes. How do I keep from losing my shell environment and running processes?
The screen terminal multiplexer allows you to start a shell session
which will persist (run in the background) even if the SSH
connection terminates. Log in to the g− 2 Virtual Machine as usual,
then type screen to start a new shell.2 If your SSH connection is 2 Note that you may have to run .

~/.profile in the screen shell session
(though ~/.bashrc should already be
sourced for you).

disconnected, then you can return to your shell by logging into the
VM again and typing screen -r to ‘reattach’ to the shell.3 Screen

3 If you have multiple instances
of screen running, you may
have to specify one by name (e.g.
12540.pts-4.gm2gpvm03). The output
of screen -r will list their names.

sessions accept various keyboard shortcuts which indicate some
terminal multiplexer action. Most are activated by pressing Ctrl+a,
letting go of both keys, and then pressing another key within a
couple of seconds which is tied to a specific command. For example,
you can ‘detach’ from a screen session using Ctrl+a and then d, or
you can start another shell using Ctrl+a and then c. The screen
utility allows you to open many shell sessions simultaneously, and
you can switch between them using Ctrl+a and a number which
specifies the desired shell.4 Typing exit to close the shell session 4 The shells are zero-indexed, meaning

that you get to the first shell using
Ctrl+a then 0, the second shell using
Ctrl+a then 1, and so on.

will drop you back to the previous shell, and typing exit in the
final shell will exit the screen utility entirely, returning you to the
original shell in which you ran the command screen.

11
Releases of gm2

This section describes the various releases of gm2. A description of the
release philosophy is in Chapter 1. Some releases will have a debug
build. You should only use those builds for debugging. Use the prof
build for analyses.

The constituent versions of main packages are given for each gm2
release. You can see a list of all dependencies by running ups depend.
For example,

ups depend gm2 v6_01_00 -q prof

For g− 2 products, you can usually see a change log in the product
directory. For example,

less $GM2RINGSIM_DIR/CHANGELOG

Special migration instructions are given where necessary. Migration
in general is covered in the developer workflow section.

11.1 gm2 v6_01_00 -q prof and (-q debug)

This is the first point release of the v6 series.
Contains:

• gm2ringsim v3_00_00
• gm2geom v3_00_00
• gm2dataproducts v3_00_00
• artg4 v3_00_00
• gm2artexamples v3_00_00

11.2 gm2 v6_00_00 -q prof and (-q debug)

This a base release of the v6 series. Note that you no longer have to
specify the qualifier for the compiler version (is e7 for this release)1 1 There is only one compiler version

that works for this release.

50 offline computing and software manual [gm2 v6_03_00]

As per the release philosophy, there are no g-2 packages in this release,
only externals are released.

gm2 v6_00_00 has the following:

• art v1_13_01 Release Notes
• root v5_34_25 Release Notes
• geant v4_9_6_p04a 4.9.6, p01, p02, p03, p04
• gcc v4_9_2 with -std=c++1y for C++14 features.
• gsl v1_16 (GNU scientific library) (new!)

This release works on the following platforms:

• Scientific Linux 5
• Scientific Linux 6
• Mac OSX Mavericks
• Mac OSX Yosemite (new!)

Note that Mac OSX Mountain Lion is no longer supported.
There are significant improvements that speed up builds, including a

replacement for make called ninja. See section ??.

11.2.1 How to migrate from v5_XX_XX to v6_00_00

Updating source code: The develop branches of the standard
simulation packages are now compatible with v6_00_00. If you have
a branch that you need to update, you can merge develop on to your
branch with,

git merge develop

Be sure to read the next section for important changes.

Building with v6_00_00: In general, it is easiest to start with a
new development area. You can re-use an old one by setting up the
g− 2 environment, explicitly setting up this version of gm2 and then, in
the top level directory of your development area, do

mrb newDev -p

That command will make a new localProducts... area. You must
source the setup script in there to continue.

Missing symbols involving TFileService: The TFileService
has changed and now involves a template, which means one must
explicitly link in its library.

If you have a module that uses a TFileService, find
the CMakeLists.txt file and add to the art_make after

https://cdcvs.fnal.gov/redmine/projects/art/wiki/Release_Notes_11301
https://root.cern.ch/root/html534/notes/release-notes.html
http://geant4.web.cern.ch/geant4/support/ReleaseNotes4.9.6.html
http://geant4.web.cern.ch/geant4/support/Patch4.9.6-1.txt
http://geant4.web.cern.ch/geant4/support/Patch4.9.6-2.txt
http://geant4.web.cern.ch/geant4/support/Patch4.9.6-3.txt
http://geant4.web.cern.ch/geant4/support/Patch4.9.6-4.txt

releases of gm2 51

MODULE_LIBRARIES, art_Framework_Services_Optional_TFileService_service.
For example,

Fill Builder Filter Module
art_make(MODULE_LIBRARIES

gm2analyses_calo_clustering
art_Framework_Services_Optional_TFileService_service

)

Install header files into the products area
install_headers()

Don't do clustering until we get Nic's CaloGeometry_service up and running again
add_subdirectory(clustering)

I have made this change for most of our packages in the
feature/gm2v6 branch (now in develop).

Problems with Root on Mac Yosemite: The version of root
setup by gm2 v6_00_00 (or any v6 series release) gives an error when
you try to open a TBrowser (this only happens on the Mac Yosemite
platform). An updated root for yosemite is available. When you are
ready to analyze data with root, do the following beforehand:

setup root v5_34_25a -q e7:prof

This will give you a version of root that works on Yosemite.

11.3 gm2 v5_01_00 -q e6:prof

This is the first point release of the v5 series.
Contains:

• gm2ringsim v2_00_00
• gm2geom v2_00_00
• gm2dataproducts v2_00_00
• artg4 v2_00_00
• gm2artexamples v2_00_00

11.4 gm2 v5_00_00 -q e6:prof and (-q e6:debug)

Note the new version numbering scheme as per the release philosophy.
This release is the fifth one for g-2 since time began, thus the v5.

This release is the base release of the v5 series.
gm2 v5_00_00 has the following:

52 offline computing and software manual [gm2 v6_03_00]

• art v1_12_02 Release Notes
• root v5_34_21b Release Notes
• geant4 v4_9_6_p03e Release Notes: 4.9.6, p01, p02, p03
• gcc v4_9_1 with -std=c++1y for C++14 features.

11.4.1 How to migrate from v201402 to v5_00_00

If you have a branch that works with gm2 v201402, then you will need
to make some changes for it to work in gm2 v5_00_00 as some parts
of the build system have changed. If you are working on code we have
in Redmine, and you can merge the develop branch onto your branch
without breaking your code. Do the following:

Go to your source directory and check out your branch
Check in all code you've been working on and push to Redmine

Now merge develop onto your branch
$ git pull origin develop

If there are merge conflicts, then you will have to resolve
them. Accept changes from develop for CMakeLists.txt files and
product_deps as those will have the necessary changes.

11.5 gm2 v201402 -q e4:prof

gm2 v201402 has the following:

• art v1_08_10 Release Notes
• root v5_34_12
• geant4 v4_9_6_p02
• gcc v4_8_1 with -std=c++11 for C++11 features.
• cmake v2_8_8

and

• gm2ringsim v1_00_00
• gm2geom v1_00_00
• gm2dataproducts v1_00_00
• artg4 v1_00_00

This is the old release with the old date scheme. It should no longer
be used.

11.6 The Release Philosophy

What is a gm2 release? A gm2 release is a versioned collection of
libraries and executables that you either use or build your code against.

https://cdcvs.fnal.gov/redmine/projects/art/wiki/Release_Notes_11202
https://root.cern.ch/root/html534/notes/release-notes.html
http://geant4.web.cern.ch/geant4/support/ReleaseNotes4.9.6.html
http://geant4.web.cern.ch/geant4/support/Patch4.9.6-1.txt
http://geant4.web.cern.ch/geant4/support/Patch4.9.6-2.txt
http://geant4.web.cern.ch/geant4/support/Patch4.9.6-3.txt
https://cdcvs.fnal.gov/redmine/projects/art/wiki/Release_Notes_10810

releases of gm2 53

A particular gm2 release contains a particular version of gcc, art, root,
geant4, etc. These libraries/executables are called the externals. A gm2
release may also contain g − 2 applications and libraries built against
those externals (e.g. gm2ringsim, artg4). If the versions of those
packages are suitable for you, then you can use them directly without
having to build them yourself. This means we have official versions of
these packages.

Official releases are important. For the purpose of scientific repro-
ducibility, it is important to know how results were produced. Using
a versioned release means that we know the code used for an analysis
and can re-run it to do further analyses or look for mistakes. Official
releases are essential for sharing code, as is gives people a common base
and starting place.

The philsophy of gm2 releases is that the first (major) version num-
ber in the release (e.g. the 5 in v5_00_00) is the release series. Releases
in the same series are built with the same version of externals (gcc,
art, geant4, root, etc) and so they are all binary compatible. The
vX_00_00 release only has externals in it and is called a base release.
We then add point releases (e.g. v5_01_00, v5_02_03) containing g− 2
libraries and applications (e.g. gm2ringsim). If there is a new art or
root, then the major version number increases (e.g. to v6_00_00) and a
new series is started. New major releases (new series) should occur only
3-4 times per year.

The point releases can occur more often and represent official
changes to the g − 2 code base (e.g. new geometry or features in the
simulation). Feature changes advance the middle (minor) version
number and bug fixes advance the last (patch) version number. So
the first release of g − 2 code for a new series is vX_01_00. A feature
addition will advance to vX_02_00. A subsequent bug fix will advance
to vX_02_01.

Users adoption of these point releases is optional. They can always
build all of the necessary code based on the vX_00_00 base release. But
using a point release can be convenient and save a large amount of time
by using pre-built libraries instead of building them by hand. The point
releases also represent a trackable official progression of features and
bug fixes. Users can also use libraries from a point release, but build
parts of the release themselves that they are developing (e.g. developing
gm2ringsim, which is also in the release). In these cases, the build
system will automatically use the user developed code instead of what
is in the release. The superbuild system, which does builds across
platforms for use on the grid, will automatically mark such user-built
libraries as unofficial.

54 offline computing and software manual [gm2 v6_03_00]

11.6.1 How do releases help me as a user/developer?

If the official released code is suitable for you (e.g. you are not develop-
ing the code in the release, but are instead developing code that uses
the release), then using an official release will save you compilation
time and will be more convenient. You can more easily track what you
have run on the grid. You may be able to run without having to build
anything (e.g. simply running the official gm2ringsim.

You should use an official point release whenever possible. Instruc-
tions for setting up your development area and how to migrate to new
releases are given in the section under the release notes as well as in
Chapter 3 of this manual.

12
What is this document?

This document is meant to be a user’s manual to the Muon g-2 offline
and simulation software and computing system.1 This document 1 This document replaces the documen-

tation we had in the Redmine Wiki
because the Wiki was hard to edit and
keep up-to-date, hard to sync with
versions, hard to search, and required
a network connection.

is a PDF file, so it is trivial to search and you can copy it to your
computer/tablet/phone/watch and read it anywhere including your
office, in meetings, on the plane, in the tub, etc. It is also generated by
a git repository using the same build system infrastructure as our code
base, so it is easy to version itself and keep in sync with code versions.
We support writing sections directly in LaTeX (which you probably
already know) and in Markdown (like LaTeX, but simpler). Finally,
there’s a special script that can run shell commands and put the output
directly in the document (no cutting and pasting).

The idea is to have documentation that is easy to read, easy to write,
and easy to keep up to date. All links in the document are click-able in
your PDF reader.

One nice thing about having Wiki pages was that each page can be
short and so the documentation looks manageable, until you try to find
something. The problem with one big PDF file is that it will be big and
will look overwhelming. Remember to read the section titles carefully
and just read what you need. Furthermore, all of the links to sections
(e.g. in the table of contents) are live and will allow you to navigate
the file easily. Nearly every PDF reader has a back button to take you
back to previously read pages (back-traversing links if necessary); it will
probably come in handy.

12.1 What code goes with this document?

The title of this document states the corresponding version of gm2. gm2
is the “umbrella” product that specifies a release. For example, this
version of the document goes with gm2 v6_01_00. On the bottom of
the title page is the git version information for this document itself. For
this version, it reads v6_01_00_00-6-gb7d6c91-dirty. There are three
or four parts to this description, separated by dashes (not underscores;

56 offline computing and software manual [gm2 v6_03_00]

the underscores are part of the version). The first part corresponds
to the gm2 version, with an additional two digits at the end since the
documentation may be updated more often than the g-2 code. This
version should be the git tag of this document. The second part is
the number of commits past the tag. If it is non-zero, then there are
untagged changes. The third part is g followed by the git hash of the
commit corresponding to this document (e.g. 0be91c0). All of this
could be followed by -dirty, which means that this document comes
from source files with uncommitted changes.2 2 Official documentation has zero for

the second part (number of untagged
commits) and no -dirty.

12.2 Obtaining this documentation

The latest official version of this documentation is in GM2 DocDB as
GM2-DOC-1825.3 Newer releases of gm2 (staring from gm2 v5_01_00) 3 DocDB uses its own versioning

scheme (just a sequential number)
which does not correspond to the gm2
release.

will have a copy of this manual that corresponds to the particular gm2
version at $GM2SWDOCS_DIR/manual.pdf.

12.3 Obtaining the source for this documentation, con-
tributing to it, and building it

To get the source,4 follow the instructions in section ??. When you 4 Note: The program pandoc at
http://johnmacfarlane.net/pandoc is
used to convert markdown and other
file formats to LaTeX. It is part of our
g-2 release for SLF6 machines. See
below for installing it on your own
machine.

get to section ??, instead of checking out gm2artexamples, checkout
gm2swdocs. You will be in the develop branch. If you want to check-
out a particular tag, branch, or hash, you can do that with the git
checkout command. For example,

git tag # Show all of the tags
git checkout v5_00_00_02 # Check out sources for this tag

You can also do git checkout on a git commit hash value to
checkout the sources for that particular commit.

12.3.1 Changing and adding to documentation

If you want to change or add documentation, you should start a feature
branch with git flow feature start <your_branch_name>. You
can then alter or add your own documentation. When you are ready to
complete your feature branch, send mail to gm2-sim@fnal.gov and let
people look at your changes first.

There are several directories in gm2swdocs. You should not need to
alter anything in the Modules nor ups directories. The former contains
cmake macros needed for building the source files into PDF. The
latter is for the build and release system. The other directories, latex,
markdown, bashmd is where you’ll put your documentation or make
changes.

http://gm2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1825
http://johnmacfarlane.net/pandoc

what is this document? 57

The latex directory has files in LaTeX as well as some LaTeX
infrastructure files. The most important file in there is manual.tex,
which is the main driver file for this document.5 All other parts come 5 We are using a document class based

on “Tufte” documents, where notes
and captions go into the wide right
margin. Please see the existing LaTeX
files for examples.

in with an \include{filename.tex} command, but this is handled
automatically by a cmake variable (you won’t see the \include lines in
the file). If you add your own LaTeX file in the latex directory, follow
instructions in srcs/gm2swdocs/CMakeLists.txt.

The markdown directory has files written in the Markdown format
and converted by Pandoc. A Google search on Markdown will give you
lots of information. The Pandoc variant of Markdown is described in
http://johnmacfarlane.net/pandoc/demo/example9/pandocs-markdown.
html. See existing files in this directory for examples. If you want to
write something quickly and do not need fancy LaTeX, then Markdown
is the way to go. If you add a file to this directory, you must follow the
instructions in markdown\CMakeLists.txt.

The bashmd directory has files written in Markdown but
also actually runs bash code with the output going into
the document. The best file to look at for an example is
bashmd/gettingStarted_gm2artexamples.bashmd. Again, if
you add a file to this directory, see bashmd/CMakeLists.txt for
instructions.

Pandoc understands many Wiki mark-up formats. If you have a
favorite one, it is possible to add it to this document and have pandoc
process it. Ask for help. If you are not passionate about mark-up
formats, then please just use Markdown as it works very well.

12.3.2 Building the documentation

If you are on Mac, a Windows machine, or your own Linux machine,
you must have installed a full TeX suite and pandoc on your system.
See http://johnmacfarlane.net/pandoc/installing.html for installation
instructions for pandoc. If you are on gm2gpvm, everything is installed
there for you, but you must issue setup pandoc; see below.

Assuming your environment is set up (see above) then you need
to do, once per session, . mrb s . If you are on gm2gpvm, do setup
pandoc (it only works on SLF6, so use machines gm2gpvm02-04). Then
you can do mrb b to build. Note that by default, files in bashmd/ will
not be built as they can take a long time. If you do want them built,
then do mrb b -DBUILD_BASHMD=1. Also, pdflatex will run many
times to ensure that references and table of contents are all resolved. If
you make changes, only those changed files will be rebuilt on subsequent
builds. If you see an error like Cannot find PANDOC and you are own
gm2gpvm, then you forgot to issue the setup pandoc command.

The output PDF file will be in $MRB_BUILDDIR/gm2swdocs/latex/manual.pdf.

http://johnmacfarlane.net/pandoc/demo/example9/pandocs-markdown.html
http://johnmacfarlane.net/pandoc/demo/example9/pandocs-markdown.html
http://johnmacfarlane.net/pandoc/installing.html

58 offline computing and software manual [gm2 v6_03_00]

On a Mac, you can view it with,

open $MRB_BUILDDIR/gm2swdocs/latex/manual.pdf

When you have completed your feature branch, send mail to
gm2-sim@fnal.gov and await further instructions.

what is this document? 59

Index

add_subdirectory, 35
art_make, 36
arguments, 37

artmod, 35

CMakeLists.txt
directory level, 36
top level, 33

exceptions, 45
external code, 38

find_ups_geant4, 41
find_ups_product, 39
find_ups_root, 40

input source
writing, 36

install_headers, 36

linking, 38

modules
writing, 35

services
writing, 36

	Introduction
	What code goes with this document?
	The Release Philosophy

	Setting up a Development Environment
	Your options
	Fermilab gm2 group Virtual Machines
	Native development on your own computer
	CentOS Virtual Machine
	Docker container

	Developer Workflow
	Setup/Initialize gm2 software environment
	Setting up a development area
	Checking out and building code
	Incremental rebuilds

	Using a Mac for Development
	Running the simulation
	Component packages in the simulation
	Using a base release
	Using a point release
	FCL files for the simulation

	Running Jobs on the Grid
	First Learn about jobsub
	Output location
	Generating Data
	gridSetupAndSubmit.sh
	submit-release.sh
	submit-localrelease.sh

	Storing Data and Using SAM
	What is SAM?
	File Locations
	User Datasets
	Running over a Dataset
	Automatic SAM Database population

	Writing Source Code
	Top level CMakeLists.txt file
	Organizing Source Code
	Writing Modules
	Writing Services
	Writing Input Source Modules
	Directory level CMakeLists.txt file
	Libraries produced from building
	Using External Code (Linking)

	Things You May Do in Your Code
	Dealing with parameters
	Readling enviornment variables
	Throwing an exception
	Finding a file

	Frequently Asked Questions
	Releases of gm2
	gm2 v6_01_00 -q prof and (-q debug)
	gm2 v6_00_00 -q prof and (-q debug)
	gm2 v5_01_00 -q e6:prof
	gm2 v5_00_00 -q e6:prof and (-q e6:debug)
	gm2 v201402 -q e4:prof
	The Release Philosophy

	What is this document?
	What code goes with this document?
	Obtaining this documentation
	Obtaining the source for this documentation, contributing to it, and building it

	Index

