
M U O N g − 2

O F F L I N E C O M P U T I N G
A N D S O F T W A R E
M A N U A L

v201402 April 16, 2014 [master a78a4c0] GM2-doc-1825

http://gm2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1825

Contents

1 Writing Source Code 5

1.1 Top level CMakeLists.txt file 5

1.2 Directory level CMakeLists.txt file 7

1.3 Libraries produced from building 9

1.4 Using External Code (Linking) 10

Index 17

1
Writing Source Code

Your source code lives within a git project checked out to your devel-
opment area’s srcs directory. The project has a top level directory1 1 For example, the gm2ringsim

project would get checked out to
srcs/gm2ringsim, which is the “top
level” directory.

that contains the “top level” CMakeLists.txt file along with various
subdirectories. Code with a common purpose should live in a partic-
ular subdirectory.2 You may mix headers (.h, .hh), implementation 2 Examine gm2ringsim for more exam-

ples.(.cc, .cpp), and configuration (.fcl) files all in the same subdirec-
tory.

1.1 Top level CMakeLists.txt file

The top level CMakeLists.txt file lives in your top level project di-
rectory (e.g. srcs/gm2ringsim/CMakeLists.txt). It has the main
directives that tells CMake how to build your project.

Below is a representative top level CMakeLists.txt file.3 The 3 There are five main parts of the file
(roughly in order in the file)...

• Defining the project

• Loading CMake macros and setting
the CMake environment

• Setting compiler options

• Specifying external packages that
will be used

• Specifying subdirectories that
contain a CMakeLists.txt file and,
perhaps, code to build

mrb newProduct command will create a skeleton file for you.

1 # Ensure we are using a moden version of CMake

2 CMAKE_MINIMUM_REQUIRED (VERSION 2.8)

4 # Project name - use all lowercase

5 PROJECT (gm2analyses)

7 # Define Module search path

8 set(CETBUILDTOOLS_VERSION $ENV{CETBUILDTOOLS_VERSION})

9 if(NOT CETBUILDTOOLS_VERSION)

10 message(FATAL_ERROR

11 "ERROR: setup cetbuildtools to get the cmake modules")

12 endif()

13 set(CMAKE_MODULE_PATH $ENV{CETBUILDTOOLS_DIR}/Modules

14 ${CMAKE_MODULE_PATH})

16 # art contains cmake modules that we use

17 set(ART_VERSION $ENV{ART_VERSION})

18 if(NOT ART_VERSION)

19 message(FATAL_ERROR

6 offline computing and software manual

20 "ERROR: setup art to get the cmake modules")

21 endif()

22 set(CMAKE_MODULE_PATH $ENV{ART_DIR}/Modules

23 ${CMAKE_MODULE_PATH})

25 # Import the necessary macros

26 include(CetCMakeEnv)

27 include(BuildPlugins)

28 include(ArtMake)

29 include(FindUpsGeant4)

31 # Configure the cmake environment

32 cet_cmake_env()

34 # Set compiler flags

35 cet_set_compiler_flags(DIAGS VIGILANT WERROR

36 EXTRA_FLAGS -pedantic

37 EXTRA_CXX_FLAGS -std=c++11

38)

40 cet_report_compiler_flags()

42 # Set include and library search paths (the version numbers

43 # are minimum - if actual version of product is below specified,

44 # will get error)

46 # Everyone should include these

47 find_ups_product(cetbuildtools v3_07_08)

48 find_ups_product(art v1_08_10)

49 find_ups_product(fhiclcpp v2_17_12)

50 find_ups_product(messagefacility v1_10_26)

52 # This project uses code from gm2ringsim,

53 # gm2dataproducts, and gm2geom

54 find_ups_product(gm2ringsim v1_00_00)

55 find_ups_product(gm2dataproducts v1_00_00)

56 find_ups_product(gm2geom v1_00_00)

58 # This project uses code from Root

59 find_ups_root(v5_34_12)

61 # Make sure we have gcc

62 cet_check_gcc()

64 # Macros for art_make and simple plugins (must go after

65 # find_ups lines)

66 include(ArtDictionary)

68 # Specify subdirectories to build

69 add_subdirectory(ups) # Every project needs a ups subdirectory

70 add_subdirectory(DisplayDataProducts)

writing source code 7

71 add_subdirectory(calo)

72 add_subdirectory(fcl)

73 add_subdirectory(test)

74 add_subdirectory(util)

76 # Packaging facility - required for deployment

77 include(UseCPack)

1.1.1 When you need to add/change a line in top level CMakeLists.txt

There are two situations for which you will have to alter the top level
CMakeLists.txt file:

If you add, delete, or rename a subdirectory If you add a subdirectory,
you must write a corresponding add_subdirectory(dirName) direc-
tive.4 If you delete a directory, you must remove its corresponding 4 The add_subdirectory directory tells

CMake to go into that subdirectory and
build code there. If you don’t have the
add_subdirectory then CMake won’t
look in the subdirectory at all.

add_subdirectory line. If you rename a directory, you must edit its
corresponding add_subdirectory line to reflect the change. If you
do not follow these steps, then some code may not build (without an
error, so this mistake will be hard to find) or you may get an error
when CMake tries to build a directory that no longer exists.

You use code from an external project If you use code from an external
project, you may need to add a corresponding find_ups_product or
similar line.5 5 See section 1.4 for instructions.

1.2 Directory level CMakeLists.txt file

If your subdirectory (e.g. srcs/gm2analyses/strawTracker) has any-
thing to build, has header files, or has further subdirectories, then it
must have a CMakeLists.txt file (and a corresponding add_subdirectory

line in the CMakeLists.txt from the directory above - see Sec. 1.1.1).6 6 The directory level CMakeLists.txt
file is different from the top level
CMakeLists.txt file. The latter is in
your project top level directory, like
srcs/gm2analyses. The former is in
a subdirectory of that top level and is
described in this section.

If your subdirectory has code to build, then the directory CMakeLists.txt

file needs to have

1 art_make()

A directory with no .cc or .cpp files has no code to build and so
does not get an art_make line in the directory CMakeLists.txt file.

See the next section (Sec. 1.2.1) for arguments to the art_make. You
should call art_make only once per CMakeLists.txt file.

If your subdirectory has header files, then those have to be copied
to the release area when one runs mrb install. To do that, you need
a line the directory CMakeLists.txt file with

1 install_headers() # No arguments

8 offline computing and software manual

If your subdirectory has fcl files, then those need to be copied to
the build area as well as the release area. There is some scripting in-
volved to do that (put the following in the directory CMakeLists.txt

file),

1 # install all *.fcl files in this directory to the release area

2 file(GLOB fcl_files *.fcl)

3 install(FILES ${fcl_files}

4 DESTINATION ${product}/${version}/fcl)

6 # Also install to the build area

7 foreach(aFile ${fcl_files})

8 get_filename_component(basename ${aFile} NAME)

9 configure_file(

10 ${aFile} ${CMAKE_BINARY_DIR}/${product}/fcl/${basename}

11 COPYONLY)

12 endforeach(aFile)

If your subdirectory has futher subdirectories with code to build,
then you need an add_subdirectory(dirName) line for each subdi-
rectory.

1.2.1 Arguments to art_make

You can find documentation for art_make in its source code at
$ART_DIR/Modules/ArtMake.cmake. Basically, you need to specify

what libraries to link against when you use external code.7 If you 7 See Sec. 1.4 for how to tell if you are
using external code.don’t use any external code, then you will have no arguments to

art_make. It will tell CMake to build all regular source, modules,
services, and input sources in the directory. If you do use external
code, then you have four choices,

• If the source file using external code is a regular source (not a
module, not a service, not an import source), then you need

1 art_make(

2 LIB_LIBRARIES

3 library1

4 library2 # if needed

5)

• If the source file using the external code is a module source
(e.g. analyze_my_hits_module.cpp) then you need

1 art_make(

2 MODULE_LIBRARIES

3 library1

4 library2 # if needed

5)

writing source code 9

• If the source file using the external code is a service source
(e.g. analyze_my_hits_service.cpp) then you need

1 art_make(

2 SERVICE_LIBRARIES

3 library1

4 library2 # if needed

5)

• If the source file using the external code is source code for an
input source
(e.g. midas_source.cpp) then you need

1 art_make(

2 SOURCE_LIBRARIES

3 library1

4 library2 # if needed

5)

If you have a mixture of sources in your directory, you can string
the calls together. For example,8

8 In the example to the left, regular
sources get linked against Root’s
libGpad.so (see Sec. 1.4.2) and mod-
ules get linked against code built
in the srcs/gm2analyses/util and
srcs/gm2analyses/strawtracker/util

directories (see Secs. 1.4.4 and 1.4.5).

1 art_make (

2 LIB_LIBRARIES

3 ${ROOT_GPAD}

4 MODULE_LIBRARIES

5 gm2analyses_util

6 gm2analyses_strawtracker_util

7)

Note that it does not hurt for code to build against a library that it
doesn’t need. So if you have five modules and only one needs to link
against a library, put that library in the MODULE_LIBRARIES section.
The one that needs it will link against it and the four that don’t won’t
care.

1.3 Libraries produced from building

Every directory in your project that has code to build generates at
least one library.9 Say, for example, you have a directory called

9 An important note, if your directory
only has header files in it (should be
a rare situation for code written by
users), then no library will be produced
(because there is no code to build -
the header files are all included by
other source code). You still need the
directory level CMakeLists.txt file for
the install_headers() directive, but do
not do art_make. See Sec. 1.2.

gm2analyses/calo. Regular sources (not modules, services, nor in-
put sources) get compiled and the objects go into a library called
libgm2analyses_calo.so (the name is the directory path with slashes
replaced by underscores). Each module in the directory gets its own
library. For example, if there is a module in that directory called
Analyze_Calo_module.cc then that code will go into a library called

10 offline computing and software manual

libgm2analyses_calo_Analyze_Calo_module.so. A similar thing hap-
pens for services and input sources. Therefore, one directory of code
may produce several libraries. The art_make directive in the directory
CMakeLists.txt file tells the build system to build code and make the
corresponding libraries.

1.4 Using External Code (Linking)

Your code is almost never self-contained, especially when writing
within the Art framework. You may use functions and classes from
external libraries, like Root and Geant4. You may use algorithms,
data products, and other functionalities from other projects, like
gm2ringsim. You may use objects defined in other directories in your
project. If you are writing an art module or service, you may use
objects defined in the same directory, but in a different file from the
module or service. All of these examples are “external code”.

Art uses dynamic linking, which means that the art executable (ours
is called gm2) has very little code in it. Instead, it loads all of the li-
braries it needs at runtime. The other style is static linking where
the executable has embedded in it all of the libraries it needs. Dy-
namic linking, as the name suggests, allows for flexibility with one
executable able to load a variety of different libraries decided upon
at runtime with the configuration file. There is, however, overhead
in dynamic loading typically experienced as slow start-up time of
the program. Static linking produces an executable with all of the
libraries built in - so there is little flexibility in terms of functionality.
But the start up time is much faster. Static linking typically leads to
many copies of executables for the different functionalities, resulting
in duplication of libraries that are in common. For maximum flexibil-
ity and non-duplication of libraries, art loads everything dynamically.

How do you know when you are using external code? An
easy indicator is when you have a #include for a header file. For
each #include, you need to think and perhaps add a corresponding
link directive in a CMakeLists.txt file.10 If you forget to link to a

10 Remember the two types of
CMakeLists.txt files: “top level”
and “directory level”. The former (see
Sec. 1.1) is the potentially big file at
the top level of your project. The latter
(see Sec. 1.2) is the smaller file in the
directory with your actual source code
files.

library that you need, you will get a missing symbol error when you
try to run. This section will explain how to figure out these situations
and actions you need to take.

1.4.1 Includes for system headers and base art headers

System headers, like #include <string> do not require any special
directives for linking. You get them for free.

Headers in art, fhiclcpp, and messagefacility do not require

writing source code 11

anything in your directory level CMakeLists.txt file. The corre-
sponding libraries are automatically loaded by the art executable.
Your top level CMakeLists.txt file must contain the following lines,11

11 These lines add header file directories
to the compiler include search path
(e.g. without them, you will get a
compilation error that header files
cannot be found).

1 ...

2 cet_report_compiler_flags()

3 ...

4 find_ups_product(art v1_08_10)

5 find_ups_product(fhiclcpp v2_17_12)

6 find_ups_product(messagefacility v1_10_26)

7 ...

1.4.2 Includes for Root headers

Including a header from Root is a little unusual because you do not
have to give a path in the include, e.g. #include "TCanvas.h" (not
#include "root/TCanvas.h"). If you include a header from Root, you
will also need to link to the corresponding Root library. First, in the
top level CMakeLists.txt file, you must have,12

12 That find_ups_root line adds the
Root headers to the compiler include
search path and creates CMake vari-
ables corresponding to each Root
library.

1 ...

2 cet_report_compiler_flags()

3 ...

4 find_ups_root(v5_34_12)

5 ...

If you look at the code for the find_ups_root CMake macro at
$CETBUILDTOOLS/Modules/FindUpsRoot.cmake you will see lines

like,13

13 These lines define the CMake vari-
ables that correspond to Root libraries.
You use them in the directory level
CMakeLists.txt file to tell CMake to
link against that library.

1 find_library(ROOT_GLEW NAMES GLEW PATHS ${ROOTSYS}/lib

2 NO_DEFAULT_PATH)

3 find_library(ROOT_GPAD NAMES Gpad PATHS ${ROOTSYS}/lib

4 NO_DEFAULT_PATH)

5 find_library(ROOT_GRAF NAMES Graf PATHS ${ROOTSYS}/lib

6 NO_DEFAULT_PATH)

7 find_library(ROOT_GRAF3D NAMES Graf3d PATHS ${ROOTSYS}/lib

8 NO_DEFAULT_PATH)

To determine the Root library you need, look up the Root object in
the Root documentation at http://root.cern.ch/drupal/content/
reference-guide (select the appropriate version of Root - usually the
PRO version). Find the class name from the list and click on it. On
the new page, on the very right hand side in a little greyed out box it
will say the library that corresponds to that Root object. For example,
if you #include "TCanvas.h" you need to link against the libGpad

library. The CMake variable name will in general be the name of the

http://root.cern.ch/drupal/content/reference-guide
http://root.cern.ch/drupal/content/reference-guide

12 offline computing and software manual

library, all upper case, with the lib replaced by ROOT_. So libGpad→
${ROOT_GPAD}.

In your directory level CMakeLists.txt file, you will have the
art_make directive. Add the appropriate CMake variable correspond-
ing to the Root library you need. See Sec. 1.2.1 for where to put such
items in the arguments. For example,14

14 In the example left, regular sources
are linked against libGpad.so while
modules are linked against libTree.so
and libTVMA.so.

1 art_make (

2 LIB_LIBRARIES

3 ${ROOT_GPAD}

4 MODULE_LIBRARIES

5 ${ROOT_TREE}

6 ${ROOT_TVMA}

7)

1.4.3 Includes for GEANT headers

To include a header file from Geant4, requires you to have Geant4/ in
the header path, for example #include "Geant4/G4Track.hh". If you
include such headers in your code, then you will also need to link
against the Geant4 libraries. First, in your top level CMakeLists.txt
file, you must have,

1 ...

2 cet_report_compiler_flags()

3 ...

4 find_ups_geant4(v4_9_6_p02)

5 ...

That line adds the Geant4 headers to the compiler include search
path and creates the CMake variables ${G4_LIB_LIST} and ${XERCESLIB}.
For any Geant4 header, just add those CMake variables to the art_make

directive in your directory CMakeLists.txt file. See Sec. 1.2.1 for
where to put such items in the arguments. For example,
srcs/gm2ringsim/calo/CMakeLists.txt has, in part,15

15 If you are curious, you can see
where G4_LIB_LIST is defined in
$CETBUILDTOOLS_DIR/Modules/FindUpsGeant4.cmake.
XERCESLIB goes with Geant.

1 art_make(

2 LIB_LIBRARIES

3 gm2geom_calo

4 gm2geom_station

5 artg4_material

6 artg4_util

7 ${XERCESCLIB}

8 ${G4_LIB_LIST}

9 SERVICE_LIBRARIES

10 gm2ringsim_calo

11)

writing source code 13

1.4.4 Includes for headers in the project

The #include directive should include the path to the header file,
including the name of the project even if the header is in the same
directory as the source, though you could just give the header file
name. For example, if CaloHitSD.hh is in the gm2ringsim/calo di-
rectory, then CaloHitSD.cc, when it includes CaloHitSD.hh, can do
either

1 #include "CaloHitSD.hh"

or

1 #include "gm2ringsim/calo/CaloHitSD.hh"

The latter is preferred as it is clearer, but if you change the name of
the directory, you must change the include as well.

If you have a regular source file and it includes a header that is
present in the same directory, then you do not need to do anything
to the CMakeLists.txt files. If you have a module, service, or input
source file and it includes a header that is present in the same direc-
tory, then you need to link against the library for that directory. You
do not need to add anything to the top level CMakeLists.txt file.
To the directory CMakeLists.txt file, you must add the library. See
Sec. 1.2.1 for where to put such items in the arguments. For example,
srcs/gm2ringsim/calo/CMakeLists.txt has, in part,16

16 In the left example, services in
that directory are linked against
the library that gets created from
the regular sources, namely
libgm2ringsim_calo.so. You can
predict the name of the library by
taking the source directory (e.g.
gm2ringsim/calo) and replacing the
slashes by underscores.

1 art_make(

2 LIB_LIBRARIES

3 gm2geom_calo

4 gm2geom_station

5 gm2ringsim_station

6 artg4_material

7 artg4_util

8 ${XERCESCLIB}

9 ${G4_LIB_LIST}

10 SERVICE_LIBRARIES

11 gm2ringsim_calo

12)

If any source file uses a header that present in a different directory
in your project, then you must link against that library. In the exam-
ple above, code in the gm2ringsim/calo directory includes code from
gm2ringsim/station, and hence gm2ringsim_station is present in
the arguments of art_make.

An important exception to these instructions is if the directory
with the header file contains only header files. In that case, that
directory produces no libraries and you do not have to change the
directory CMakeLists.txt file.

14 offline computing and software manual

1.4.5 Includes for headers in other projects

If you have a source file (regular, module, service, or input source)
that uses code from another project, then you need to do some work.
An example here is code in gm2ringsim uses code from the gm2geom

and artg4 projects. The #include needs the path to the header file
including project name, directory name and header name. For exam-
ple, #include "artg4/util/util.hh".

In your top level CMakeLists.txt file, you need a find_ups_product

line for the project specifying the project name and a minimum ver-
sion number. See Sec.1.1 for an example.

In your directory CMakeLists.txt file, you need to list the library
corresponding to the code you are using. See Sec. 1.2.1 for where to
put such items in the art_make arguments. For example,
srcs/gm2ringsim/calo/CMakeLists.txt has, in part,

1 art_make(

2 LIB_LIBRARIES

3 gm2geom_calo

4 gm2geom_station

5 artg4_material

6 artg4_util

7 ${XERCESCLIB}

8 ${G4_LIB_LIST}

9 SERVICE_LIBRARIES

10 gm2ringsim_calo

11)

When the regular sources are built, they will be linked against
code in gm2geom/calo, gm2geom/station, artg4/material, and
artg4/util.

An important exception to these instructions is if the directory
with the header file contains only header files. In that case, that
directory produces no libraries and you do not have to change the
directory CMakeLists.txt file. You still need to have the top level
CMakeLists.txt file correct as described above.

writing source code 15

Index

add_subdirectory, 7

art_make, 7

arguments, 8

CMakeLists.txt
directory level, 7

top level, 5

external code, 10

find_ups_geant4, 12

find_ups_product, 11

find_ups_root, 11

install_headers, 7

linking, 10

	Writing Source Code
	Top level CMakeLists.txt file
	Directory level CMakeLists.txt file
	Libraries produced from building
	Using External Code (Linking)

	Index

