lllegal Instruction with CADMesh

Thursday, August 4, 2016 3:03 PM Adam Lyon

Problem:

The main build test was failing with an illegal instruction error when trying to build the g-2 simulation code on the
Fermilab Jenkins build service. The build test attempts to run the simulation for a few events. Of particular importance is
the fact that the test fails on older SLF6 build nodes (e.g. buildservice001, 002) but succeeds on newer SLF6 build nodes
(e.g. buildservice004, 005).

Also perhaps relavent - on a previous build of the simulation code, g-2 was seeing illegal instruction errors when trying to
run the verification package on the grid. The errors occurred on older worker nodes only.

Investigation:

Seth kindly added me to the buildservice001 k5login so | could directly run the problematic job. Marc, Chris Greene and
Paul, helped with the investigation over ReadyTalk and phone since Adam was working from home. Total investigation
time was 22 minutes.

Reproducing the error on buildservice001.fnal.gov in /scratch/workspace/adam-test (setup a g-2 development area, copy
in the g-2 simulation libraries from a successful build on Jenkins, set up the local products environment, run)

source /cvmfs/gm2.opensciencegrid.org/prod7/g-2/setup

setup gm2 v7_00_00 -q prof

mrb newDev

source localProducts_gm2_v7_00 00 prof/setup

wget https://buildmaster.fnal.gov/view/gm2/job/gm2-superbuild2/GM2QUALS=prof,g-2-build-
nodes=buildservice@@4.fnal.gov/lastSuccessfulBuild/artifact/superbuild Linux64bit+2.6-
2.12 _189.tgz

> tar xvzf superbuild_Linux64bit+2.6-2.12_189.tgz

> . mrb slp

> gm2 -c mdcO.fcl

%MSG-i MF_INIT OK: gm2 04-Aug-2016 15:12:24 CDT JobSetup

Messagelogger initialization complete.

%MSG

%MSG-w CONFIG: gm2 04-Aug-2016 15:12:27 CDT JobSetup

Use of services.user parameter set is deprecated.

Define all services in services parameter set.

%MSG

vV V V VvV Vv

Illegal instruction

Run it in the debugger

> gdb --args gm2 -c mdcO.fcl
Stuff prints out
(gdb) run

Program received signal SIGILL, Illegal instruction.

0x00007fffdee23fOb in _GLOBAL__ sub_I CADMesh.cc () from
/cvmfs/gm2.opensciencegrid.org/prod7/external/cadmesh/vl 0 0/Linux64bit+2.6-2.12-e10-
prof/lib/libcadmesh. so

So the problem is in CADMesh!

Look at a backtrace

(gdb) bt

#0 ©Ox00007fffdoe23fOb in _GLOBAL__sub_I CADMesh.cc () from
/cvmfs/gm2.opensciencegrid.org/prod7/external/cadmesh/vl 0 0/Linux64bit+2.6-2.12-e10-
prof/lib/libcadmesh.so

#1 0Ox00007fffdee24066 in _ do_global ctors_aux () from
/cvmfs/gm2.opensciencegrid.org/prod7/external/cadmesh/vl 0 0/Linux64bit+2.6-2.12-e10-
prof/lib/libcadmesh. so

#2 0Ox00007fffdoe2le5b in _init () from
/cvmfs/gm2.opensciencegrid.org/prod7/external/cadmesh/vl_© 0/Linux64bit+2.6-2.12-e10-
prof/lib/libcadmesh.so

#3 0x0000007c00OOO5b in ?? ()

So the problem looks to be in the global constructor for CADMesh.

Look at the machine instructions (look for the => arrow)

(gdb) disassemble
Dump of assembler code for function GLOBAL__sub_ I CADMesh.cc:

0x00007fffdoe23f04 <+43>: mov 0x200e35(%rip),%rbx # ox7fffdle24d4e
=> 0x00007fffdee23fOb <+50>: vmovsd ©x255(%rip),%xmml # Ox7fffdoe24168
0x00007fffdoe23f13 <+58>: vxorpd %xmme,%xmmo,%xmmo

The arrow points to the vmovsd instruction. Referring to http://www.felixcloutier.com/x86/MQVSD.html, we see that the
vmovsd instruction requires the AVX CPU feature flag.

Examining /proc/cpuinfo on buildservice001, we see that the CPU is an AMD Opteron 6134 and AVX is not listed in the
CPU flags list. buildservice004, where the test does succeed, is an AMD Opteron 6320 and AVX is listed in its flags list.

The CADMesh library was built on Jenkins on buildservice005, which is an AMD Opteron 6320 machine.

Conclusions

The CADMesh build recipe (a complicated set of cmake and configure files) somewhere (either explicitly or by default)
says to use advanced CPU instructions if they are available. Since the build occurred on buildservice005, an AMD
Opteron 6320, the AVX instructions were used. Running that code on an older vintage CPU without the AVX feature
causes an illegal instruction error and the program crashes.

Indeed CMake builds CADMesh with -march=native, which will turn on all special CPU instructions.

Fixes/Workarounds

We could build CADMesh on an older machine (e.g. buildservice001) and use the older perhaps more compatible special
machine instructions. But it is not guaranteed that newer CPUs will always be completely backwards compatible, so
there is a risk here. It would be better to turn off special instructions. The risk for that route is the CADMesh and
associated code running much more slowly.

The latter route is the safest, but | see '-march=native' in the build log. | don't see any way to turn that off. In fact others
have complained about this (see https://cmake.org/pipermail/cmake/2016-May/063375.html).

So for now the workaround is to build on buildservice001, with the older CPU.

