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Requirements: overview

« Transform digitized detector waveforms into reconstructed
decay events

— pulse finding: pulse island -> pulse area [ADC counts] & time
— calibration: pulse area -> pulse photoelectrons
— clustering: pulse collection -> decay event energy, time, position

positron impact —
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Requirements: pulse finding

« separate distinct events for all At > 5 ns (pileup separation)
« do not introduce early-to-late systematic timing shifts

* have low energy threshold for pulse reconstruction
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Requirements: calibration

« achieve absolute calibration in energy units

« control long term, short term, rate dependent gain changes

« 20 ppb budget for gain related systematic error
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Requirements: clustering

« combine calibrated pulses from each decay positron

 spatially resolve at least 2/3 of pileup events remaining after
time separation, correctly partition energy
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Status: pulse finding overview

baseline pulse finding algorithm is template fitting
a template is an empirical pulse shape extracted from data

template fitting entails:

 building beam and laser template for each SiPM

 using template to fit pulse islands for time, energy, pedestal

« fitting additional pulses as needed, 2*nPulses + 1 parameters

advantages:

« fast

» precise time and energy extraction

potential disadvantage:

* requires assumption of consistent, energy independent shape

2% Fermilab



Status: template building

Template building is the process of generating an empirical
pulse shape model from a set of digitized waveforms

sort pulses based on “phase” £ 0.35F ' ' g
e phase0
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normalize each pulse by area 0.2f phase 5
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recombine average pulse shapes for each of
“phase”, offset appropriately e — 5 i 3 50 12
t [clock ticks]
interpolate these more finely binned
samples with a cubic spline to obtain
template function, T'(t)
templates will be stored in database
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Status: template fitting

2
m n
X=X 072 Di= Y 5T (ti—to;) - P
i=0 j=0
e fit traces with y? minimization o; uncertainty on sample i
D; digitizer sample i
» for given time guess(es), energy and 5 scale of pulse |
pedestal parameters are linear and can be
found analytically; numerical analysis L time of sample i
needed only for times to,j time of pulse |
P pedestal (baseline)
* number of pulses to fit and initial time m number of samples
guesses must be provided as input n hamber of pulses

* use eigen c++ library for linear algebra : :
& y & red variables are fit parameters
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Status: multi-pulse fitting

fit single pulse first

* look for peaks in residuals

* add pulses one at a time

* use previous fit result for
time guesses

e guesses must be 4 ns apart
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Status: multi-pulse fitting

xtal22 event 4

fit single pulse first

* look for peaks in residuals

* add pulses one at a time

* use previous fit result for
time guesses :

* guesses must be 4 ns apart
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Status: multi-pulse fitting

xtal22 event 4

fit single pulse first

* look for peaks in residuals

* add pulses one at a time

* use previous fit result for St .
time guesses . . e e
« guesses must be 4 ns apart B "
sample number
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Three pulses, separate islands
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Status: pulse finding performance
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* negligible contribution to E resolution

e processes single pulses at about
100 kHz per CPU (recon bottleneck)
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Status: absolute calibration

« absolute calibration through photostatistics

* illuminate SiPMs with laser

20000 xte?l 24 callbratylon
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 vary laser intensity with filter wheel AR RS e
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. . . o 10000| p, +3.61 £0.1
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mean
* measure beam energy in p.e.
» constants stored in database
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Status: gain correction

« precise scheme for long term and fill-scale gain correction still
to be defined

« proposals for fill-scale corrections:

— measure single detector energy, time dependent gain
perturbation response and apply pulse-by-pulse gain correction

— measure average early-to-late gain perturbation over entire
data set and apply correction to final histogram

* long term gain correction achieved by comparing SiPM laser

responses to laser monitor signals:

. . Lo <S$> , :
GainCorrection = — < 5 L SiPMresponse, S: source monitors
0
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Status: clustering

* clustering algorithm takes a collection of calibrated crystal
hits and outputs an arbitrary number of reconstructed decay
positron parameters, called “clusters”

* basic two step clustering algorithm in place that meets
baseline requirements:

— step one: time partitioning
— step two: spatial separation and energy partitioning
— Additionally, reports cluster position for single-positron clusters

« simulation suggests spatial separation will be confused by
preshowering, can machine learning techniques help?
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Status: cluster time partitioning
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Status: cluster spatial separation

e spatial separation runs on hits 16
. ey . - Almost all Large deposition far from max
grouped by time partitioning xE energyis
i~ £ in here \
_ o = E (33
e current algorithm based on finding - .

peaks in E / Emax far from max crystal 2

Distance from max 8

* iterative procedure, will find arbitrary
number of separate clusters (tested
on up to four)

Success

* energy partition according to 3x3 e o
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Status: cluster position extraction

logarithmic weighting provides best
compromise between precision and
position bias

achieved 2 mm resolution at 2 GeV
according to simulation, consistent with
test beam data
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Status: spatial pileup confusion

Effects that confuse the spatial separation algorithm:

+ “false pileup,” false positives on single decay events that
preshower before reaching a calorimeter
(about 0.1% of events, according to simulation)

« extreme impact angles for low energy decays

a false pileup event
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Status: machine learning experimentation

we briefly experimented with feed forward (FF) neural networks
and support vector machines (SVM) to see if they can
distinguish false pileup
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Future plans

» develop alternative analysis chain and alternative algorithms
— alternative clustering techniques
— further machine learning investigation
— one-step fitting-clustering algorithms

* build offline chain for Q-method analysis
* Implement and test database integration

 stress test current system with simulation data and laser data
as we build the calorimeters
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Schedule

« Baseline analysis chain mostly ready; following shakedown
over next months, it will be ready before beam arrives

* Q-method analysis chain must be defined in time to modify
DAQ as needed

« Thank you!
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Backups
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Overall distribution
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Spatial separation pileup reduction
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Linear parameters given by:

28

TT" .

S1

P

-T-D

Tij — O'j_lT(tj — tO,i) D =

DQ/O'O

Dm/am

Never have to guess for pulse sizes, only times.
This is regardless of how many pulses you are trying to fit.
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Time steps given by:

[ST'T'" S - diag (ST" - A)]-6tg = -ST'- A

note: for single pulse fits, this is only one equation and one unknown

Ai=o0;7" (Di-Xios;T (ti—to;) - P)

T! =o' LT(t)

g dt

ti—to,q

T = 07 LT (1)

J dt?

ti—to.: 3% Fermilab
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Doubles

75 % of doubles are out here;
virtually no singles 3

................................
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“ADT” at 4 ns

ol e by by by s by oy byl

5
0 2 0 12 14 16 18 20  °©
AT [ns]
S i ]
O | 3000} s b
E. i 18 12¢
>. | 2500 ]
20 ' | 1o
O | 2000 .
C 80
3 i
- | 1500} 4 Jso
40_') i
O | 1000} {40
o i ]
2 | sooF ‘I
= S : : v ’ L 0
8 500 1000 1500 2000 2500 3000
@ )
= n photons detected at all SiPMs
$& Fermilab



