U.S. DEPARTMENT OF Office Of

é EN ERGY Science

Offline System Overview

Adam Lyon
Muon g-2 Computing Readiness Review

November 7, 2016

Ouvutline

* art g-2 framework and offline code structure - our ecosystem
* Data management and production workflow
* Nearline production

* Requirements

* Implementation

e Current status

* Future plans

* Leaving many cool pictures and plots to others

* Is this system ready for data taking?

2= Fermilab

What we’'re doing

While we get one “answer”’,
it has many values feeding
into it

Road Map for E989

2= Fermilab

Overall Requirements and Principles

We want to work together!

We need a software system that makes working together easy while maintaining or
sanity

What does this mean?

o Following best coding practices?

o Using standard libraries and APls?

o Creating your own libraries for others to use?
o Share your code in a repository?

o Documenting your code?

o Find infrastructure code from somewhere?

Yes to all the above

2= Fermilab

Principals

o Science demands reproducibility.
We must have control over our software

o We want to work together.
Share ideas through code

o We want to do physics, not computing.
We wanna make plots! Somehow, that should be easy and sane

o We want to leverage existing expertise
Don’t reinvent the wheel

2= Fermilab

Principals

o Science demands reproducibility.
Official results come from version controlled software

o We want to work together.
Code repositories; modular frameworks

o We want to do physics, not computing.
Infrastructure in a framework + an easy build system

o We want to leverage existing expertise
Join a “software community”

2= Fermilab

The art framework

Dynamic library o ligumelis Even;algﬁsop &

loading

Provenapce Your physics More physics Your friend’s Metadata
generation code code code

Run/Subrun/

Messagin Configuration
Event stores SIS 2

‘ode you write .Code you use from the

framework

The framework handles the
parts of processing that you
don’t care about and just want
to work

Let’s you concentrate on the
parts you do care about — the

physics

Importantly, the framework
centers the “ecosystem”

2= Fermilab

Ouvur Ecosystem

* Source code version control (git)

* Source code repository (redmine, github)

* Build system (cmake/cetbuildtools/mrb, spack)

* Documentation (Redmine Wiki, PDF, github)
 Development Environment (Editors, XCode, ClLion)
* Release & dependency system (UPS, spackdev)

* Build infrastructure (Jenkins, Cl)

* Distribution system (SciSoft, CVMFS)

e Software framework (arf)
 Simulation (Geant4, CADMesh, artg4)
 Data management (FIFE/SAM, xrootd)

e Job submission (FIFE/jobsub, PO/S)
e Databases

* Interactive systems (gm2gpvm, Home Institutions, Laptops)

* Guest systems (Virtualbox/Vagrant, Docker)

: , . * Execution sites (FermiGrid, OSG, HEPCloud, HPC)
* Interactive data analysis (Root, R /Python with

gallery)
3D Visualization (ParaView, artvik, gm2vik)

2% Fermilab

How these fit together - architectures

Architecture: The art of determining the needs of the user and designing to
meet those needs as effectively as possible within the constraints of
economics and technology

-

Raw Data
Data Management
Architecture

Execution

. Results » : VAN
Architecture s

Executables e =
& Libraries

Development Software
Architecture Releases Software

Architecture

2% Fermilab

Software/Development Architecture

!
Interactive Node/Laptop : ;
Job fi
Q submission o
client
Development "}. | MAMAAALL
A Environment f PIRRRAAA-LAL A |
Physicist Interactive | gogy s /';s-w TP
Check in/out Docs Analysis 3% ig VAN
R LR, eeem,

Source Code Documentation

Management
Management System Executables Architecture

& Libraries

Tag for release

v

Executables Batch

Application & Libraries Jobs

>
Release Delivery

See the next naae for the exnlanation. You

. 2= Fermilab

Source code version control e oo O

e We were one of the first
experiments at
Fermilab to use git
[Because the art team used it}

* We use the gitflow paradigm and
tool

* Hosted by Redmine

* Status: Extremely successful

11 3% Fermilab

Source code version control

 Challenges:

* Disposing of old feature branches
* Dealing with many multiple repositories

Main offline repositories:

gm2geom, gm2dataproducts, gm2ringsim,
gm2midastoart, gm2calo, gm2tracker,

gm2unpackers, gm2util, gm2analyses

Hard to know what code is where
Hard to search

Hard to version (in the end it’s the version of
the whole that matters)

12

v develop
feature/AddTrackerExtensionSupportPosts

feature/AddTrolleyRails
feature/CaloPhysicsList
feature/CoordSystemService
feature/EDMSim
feature/EDMSimBdyn
feature/EDMSimulation
feature/GEANE
feature/GEANEnew
feature/OneField
feature/SLAC2016
feature/SLACTest
feature/SLACTestBeamCalo
feature/SeparateQuadStandoffs
feature/TestNewSTLSolids
feature/Trajectories
feature/cadMeshVacs
feature/collimatorUpdate
feature/devOneField
feature/distrogun
feature/fakeevent
feature/falsePileupAnalyzer
feature/fiberHarpGun
feature/fixOverLaps
feature/g4mt

feature/gm2viz
feature/injection
feature/injection2
feature/kickerUpdate
feature/lostMuonSimple
feature/mdc2

feature/nathan
feature/paraview
feature/rotateExtensionBy2Degrees
feature/simpleParticleSourceUpdate
feature/strawTrackStandAlone
feature/strawTrackerRefactor
feature/tierOv7
feature/trackerLab3
feature/trackerPostEffectStudy
feature/trackerTestBeam
feature/trackerTestStand
feature/trajectory

feature/v7

feature/v7art

feature/v7g4

feature/v7g4mt
feature/v7g4mtLISA

master

mdcPrepare

2= Fermilab

Proposed improvement

* Move to single repository a la CMSSW on github (Redmine as backup)

 Advantages:
* Fixes searching, versioning, what code is where problems
* Leverage work from CMS (took them two years to complete their system)
* Move to github workflow (pull requests, approvals)
* Embedded documentation possible (huge improvement over Redmine)

* Difficulties:
* Have to implement git sparse checkout
* Have to implement dependency checking
* Migration

* Need time and people to do this (there’s a lot of interest)

- 2= Fermilab

https://github.com/cms-sw/cmssw

Build/Release system

e Early adopters of cmake/cetbuildtools (developed and used by art team)
e Externals and all of our packages are managed by relocatable UPS

e Externals (gcc, Geant4, Root, ...) come from art team except for a few that |
manage (paraviewvtk, cadmesh — in SciSoft)

* mrb “multi-repository-build” is a command line layer on top of cetbuildtools
[started as ‘“‘gm2d’’; adopted by LArSoft, maintained by Lynn]

* mrb newDev, mrb getgit, mrb setenv, mrb build, mrb test, ...

 UPS makes coexisting flavors and versions very easy
* Very successful!

14 # Fermilab

Build/Release system

* Challenges:
e Cetbuildtools is a very heavy-handed system; hard to extend; hard to get around limitations
* Does not use cmake ““in the cmake way” [to be fair, cetbuildtools predates many cmake improvements]
* Ups-ifying external packages is difficult
 Small community uses cetbuildtools and ups

 Waiting to see where “Spack’ goes
* Appears to be much more flexible, easier to maintain
* Larger community
* Really need “spackdev’ too (equivalent to mrb)

2= Fermilab
15

Development environment

e Survey taken in early 2016

16 Current developers

12
No Laptop/Home Cluster
10
Ubuntu-Native, Ubuntu-VM-Centos6, Something else -
8
& Mac-VM-Centosb -
0 1 2 3 B 5 6

count
Laptop

Ubuntu-Native

Mac-Native-El-Capitan, Mac-VM-Centos6, No Laptop/Home Cluster

current future anonymous
count

Are you a 9-2 developer? What kind of laptop do you use?

. 2= Fermilab

Substantial use of laptops

* Native Yosemite, Native El-Capitan, SLF6 via Vagrant/Virtualbox,
SLF6/7 via Docker

* Vagrant/Virtualbox (makes Windows laptops usable)
https://github.com/lyon-fnal/centos-gm2-dev

* Docker
https://github.com/lyon-fnal/docker-gm2

 Emacs, Xcode, CLion — can integrate with mrb

e gm2gpvmXX machines (all SLF6) are useful, but a little slow

1 2% Fermilab
/

https://github.com/lyon-fnal/centos-gm2-dev
https://github.com/lyon-fnal/docker-gm2

Testing

* We have integration tests
* Our builds run tests to exercise parts of the simulation

* Unit tests are virtually non-existent
* We don’t know how to write these, especially in a Geant4 environment
* We don’t know how to get this expertise
* Had an IMSA student try to write some tests — not very successful
* We should think about this for algorithm writing — but no expertise

 We rely on validation tests

* This seems to be sufficient for now
* [See Verification Package Breakout / Renee]

. 2= Fermilab

Optimization

* Docker container monitoring makes imageOO1.pngoptimization easier

Total Memory

1.2 GiB mem
954 MiB Real memory (RAM) used by applications. This does not include shared memory.
Apps Real Memory (w/o shared) (apps.mem)
. apps.mem
715 MiB 500
477 MiB 600
S 400 - art

238 MiB

200

0B

23:23:00 23:23:30 23:24:00 23:24:30 23:25:00 23:25:30 23:26:00 23:26:30

02:15:00 02:20:00 02:25:00 02:30:00 02:35:00 02:40:00 02:45:00 02:50:00 02:55:00

Min: 458 MiB Max: 625 MiB igprof Min: 4 MiB Max: 998 MiB

// make lookup hit L
gm2ringsim::LookupHitx {lhi= new gm2ringsim::LookupHit(lookupTable, aSecondaryTime, depth, local_cosTheta, copyNum, randl, rand2);

// only save lookup hit if this photon is detected -
if ({Lhy>detected) gm2ringsim::LookupHitStorer::getInstance().addHitToVector(lh);

// make Llookup hit
auto lh = std::make_unique<gm2ringsim::LookupHit>(lookupTable, aSecondaryTime, depth, local_cosTheta, copyNum, randl, rand2);

save lookup hit 1f thlis photon 1s detected

" only [
Llh->detected) gm2ringsim::LookupHitStorer::getInstance().addHitToVector(lh.release());

J
J J
J J
S J
.f
B I I O R R N T I Y e e R e S R U YN U A DA S S T TS AP W N S

. 2= Fermilab

Build Infrastructure

e Jenkins is used to make released code
*SLF6, SLF7, Mac Yosemite, Mac El Capitan
*gm2 “superbuild”

* May |just release SLF6

* Jenkins is awesome, except...

* The mac mini machines are severely underpowered
e CVMFS on the macs has severe problems, | think due to load; | gave up on it
* The whole system is poorly monitored - build nodes go down without notice

 We need to investigate the Continuous Integration system

. 2= Fermilab

Computing and Software Fast Index

Documentation

Releases

Releaselnformation
o o o o
* We are still looking for the right documentation
Release gm2 v7_01_00 v7_01_00
s Release gm2 v7_00_01 | v7_02_00
s o I Uil o n Release gm2 v7_00_00 v7_00_00
Release gm2 v6_04_00 v6_04_00
Release gm2 v6_02_00 v6_02_00
Release gm2 v5_00_00 v5_00_00
® o)

° R d W k Release gm2 v201402 | V201402

e m I n e I I Release gm2 v201311 | V201311

Release gm2 v201211 V201211

* Easy to write, Hard to search, a pain to maintain,)
Can’t link to code versions, Can’t read offline, Hard to index,- rdding Usore
very far frOm COde, Ugly Annotated Art Example here

Annotated Art Example file listing | 7 here

Art documentation links GettingStarted
Art in general ART Art on the Mac | ArtOnTheMac
Art Workbook ArtWorkbook
® PDF Manuql Assns PtrsAssns
° B
¢ See Ilnk Batch system | StartFermigrid
* Easy to write [mixture of LaTeX, Markdown, and c
generated], easy to search, can link to code versions, =2 =
++ Style cppStyle
can read offline, a pain to maintain, Easy to index, Conceptuel Deson Repor ntructions | COX
CIoser ‘l'o COde (in gii‘)’ Iess Ugly _CalorimeterCampaign CalorimeterCampaign

5 2= Fermilab

http://gm2-docdb.fnal.gov/cgi-bin/RetrieveFile?docid=1825&filename=manual.pdf&version=11

Documentation

* Two possible directions for improvements:

* Doxygen
* Easy to write, but...
* Hard to write comprehensive documentation in Doxygen
* Often just looking at the code is clearer

* MiniBooNE style README files (Chris Polly)
* Every directory in repository has a comprehensive README describing contents
* Release not allowed until documentation is in place

* Easy to version, easy to search [git grep or with github], easy to link to versions,
easier to maintain, documentation very near code, can read offline for checked out code,
can be pretty with Markdown

* Using Github and automatic Markdown rendering would make this really nice
* But would still need a place to document non-code (e.g. submitting jobs, etc)

22 2= Fermilab

Training

* How to get non-experts up to speed?
* Periodic workshops, usually at collaboration meetings

* Often refer people to the art class materials from summer 2015 and workshop
from summer 2016

e ... and the art workbook

 The Offline software Manuvual is helpful

2= Fermilab
23

Official Releases

* Philosophy:
* A “base release” vX_00 00 is only art and externals. No g-2 code. With this release, you can
build all of the g-2 code yourself

* A “point release” vX_YY_ZZ is layered over a base release with specific versions of g-2
packages. vZ_02_ 00

* A release ‘“system” is evolving

* Pieces are automated with Jenkins (suffers when Jenkins has problems)
*But it is time-consuming — we need a release manager

* In Practice:
* We don’t make releases as often as we should

 We often go a year without upgrading art (though this hasn’t been a huge problem)
* We need a release manager — | do this now and can’t always give it full attention

» 2= Fermilab

Release distribution

* We manage with relocatable UPS
* For release management, relocatable UPS works extremely well [but has other problems]
* All flavors and versions can live together in the same ‘““‘area’ - very convenient
* Spack could eventually replace UPS

* CVMFS is awesomel
* This is our standard (only) way to distribute executable code
e gm2.opensciencegrid.org

* Used on laptops and home institutions
* Hosts g-2 code and externals

e SciSoft
e Used for the source of externals — works well

* No plans to change — Spack may replace UPS, but we’ll still use CVMFS for distribution

: 2= Fermilab
5

http://gm2.opensciencegrid.org

Framework — art

| think | can write that we are all enthusiastic believers in and users of art

Our simulation system (artg4) has unique flexibility because of art

We are beginning to use a 3D visualization system with unique flexibility because of art

We are pushing some envelopes...
* Internal module multithreading with TBB (e.g. process a calorimeter per thread)
* Real time network i/o with Zero-MQ (e.g. for data quality monitoring)

We are successful in leveraging expertise...

* Redefining events with input source (learned from 35ton)
* Reading raw data format into art (learned from NOvVA)

* Making code more efficient (learned from MicroBooNE)

* We consult with art experts often and appreciate their help

26

2= Fermilab

Software dependency layout

=S

cadmesh

gm2midas2art gm2unpacker

gm2geom gm2dataproducts

gm?2calo gm?2tracker

gm2ringsim

We’'re moving data products to one place in for gallery
. . o . INPEREINAES
At this point, separate repositories don’t really help

27

2% Fermilab

Ddi‘d Tiers (K-S Shaw 2015-11-12)

* Raw “hits” from DAQ or Simulation i

e Calibrated and reconstructed detector C“H_t
rystalHits

* Reconstructed physics objects CaloClusters
ready for analysis

(tclus, Eclus, Wclus)

s 2% Fermilab

Data tiers

29

Experiment Simulation

MIDAS format art/ROOT format art/ROOT format gma+fcl

pulse-fitter,
construction,
calibration,

\:tc B ar:/v

fill builder,
digitization, etc

gma2midastoart
digitization, etc

art/ROOT format art/ROOT format

physics object
builder

physics object
builder

K-S Khaw 2015-11-21

2% Fermilab

Databases

* We need databases for...
 Hardware production information
* Run parameters (MIDAS ODB)
* Slow control readings and settings
* Calibration data
* Perhaps geometry / alignment information
* Beam information [IFBeam]

* Mantra: We should use existing applications and systems

* The Shanghai group owns this
* We have detailed requirements from g-2 systems

 Consulting with Steve W and Igor M for best path forward

* [See Databases Breakout talk / Dikai]

. 2= Fermilab

3D Visualization with ParaView

e Crucial for simulation verification — see talks at breakout

BField Magnitude
-2.013e+00

1.5

1

O
(6)

[T

0.000e+00

: 2= Fermilab
1

Interactive Analysis

* Root - of course
 Want to try gallery and open up other analysis tools like R and Python and ?

* How does the “spokesperson’ look at the data?
 For SLAC testbeam, converted art files into flat TTree’s
* Easy to make a plot with Root
* But the risk here is the start of another ecosystem
 We'd like to avoid multiple ecosystems on g-2

A “makestudy” art product will be useful
* Set up a directory and set up environment with one command
* Make a ready-to-go skeleton file

* Gallery is non-trivial and unlike Root - would like to see usability improvements

2= Fermilab
32

Participation in Offline work

2% Fermilab UNIVERSITY of |
e WASHINGTON K 5
Ik :) Argonne

NATIONAL LABORATORY

NATIONAL LABORATORY

I ;ggil Northern Illinois

[w University

2= Fermilab

33

Developers

Number of people pushing to Redmine / month

o o o
o
o
12 - ®
® o o0 o
Q
Q o
o
L oo o o
Y—
S g o
a e oo
£
> o o
Z
o e o0 o0 o o o
4 oo oo e o o o
o o o o o
o o XXX
o
2013 2014 2015 2016

2= Fermilab
34

Data Management Architecture

Calib/Conditions DB

Satellite
Caches

DB Cache Software

Architecture

Constants Executables

Data & Libraries

Files

Executables
& Libraries

Control

Raw

Data Data

Files

Central Analysis

Robust Files

file
archiver

—
- . .

Analysis

Catalog Files

Interactive

. Results —» :
Analysis

SN
220040

——- . -
T - -

LA YEEa.

Project

Storage

& Home
Area

Archive-backed

: 2= Fermilab
5

Data Management Implementation

e Our Mantra:
We won’t reinvent the wheel

Satellite
Caches

DB Cache

e We use the standard tools

Constants

Muon g-2
DAQ

SAM
the standard ways el —

P A SAM w— | |oment Facility
Batch
. Y Worker Jobs

* FTS will be used for the @ Nodes
o SAM .
DAQ (already in place) dcache Yl ol 53

write Interactive

pool : '
Analysis on Results —» .

GPCFor | = e —

e We're using the dCache Fermila WO Laptop

Enstore
dCache

pools including scratch and g oo
o ogeo Y
experiment specific

Project
disk &
3, - home

Read/write Pool

. 2= Fermilab

Execution Architecture

Interactive Node/Laptop

Interactive
Analysis

Job

submission e
client

Physicist

Batch Job
Development Submission Services
Architecture

Fermilab Offsite Grid/ ic’:eak Usagi
Grid/Cloud Cloud O’g;gsc’, cia
Compute Compute

Compute
Nodes Nodes Nodes

Executables
& Libraries

Data
Management
Architecture

Software
Architecture

2= Fermilab
37

Execution Implementation

* We use jobsub the standard way

* We have python scripts based on NOVA
and vetted by (former) production group

* Need to investigate POMS

* We have not yet needed resources on OSG
Would like to leverage Mu2e expertise there

* We are a test case for HPC use
(artg4 makes parallelization
straightforward)

* [See Job Submission & Workflow Breakout Talk / Tammy]

38

GPCF (gm2gpvm)

& Laptops Interactive
% LUELEIEIE— ReSults =8 ./ onomnoronppmne

jobsub
client

jobsub
server
Data
Set

HTCondor &
GlideinWMS

Offsite Grid
and Cloud AMAZON
worker EC2 Cloud

nodes

Fermigrid
worker
nodes

Data
Management

2% Fermilab

Data & Execution Summary

Running Batch Jobs

2015-12 2016-1 2016-2 2016-10 2016-11
User Onsite Allocation == User OSG

* Storage:
* 4 TB g-2 persistent
e 10 TB scraich
« 60 TB RW (Tape)

. 2= Fermilab

Production tasks

* Simulation campaigns
* Generate samples for lost muon study; practice samples
* [See Simulation Overview talk / James]

e Reconstruction

T method — convert digitized waveform islands into positron energies and time
* Calorimeter clustering, fitting [See Calorimeter Algorithm talk / Aaron]

e Q method

* Similar to T method, but no energy threshold — histogram all the data

* Tracker

* Track finding and fitting (hard due to varying magnetic field)
* Pitch correction and EDM limit

* [See Tracking Algorithm talk / Tammy]
* Auxiliary Detectors

" 2= Fermilab

Calorimeter processing

data acquisition

DAQ
Midas banks

Midastoart &
Unpacker

data
unpacking
Islands
(40-80 ns)
data
reconstruction

K-S Khaw 2016-07-26

41

simulation

MC
Truths
digitization
island | waveform fill
chopper| builder |builder

Islands Riders | Fill MC
(40-80 ns) | (700 us) | Truths

gain

correction THist
& E calibration

builder

ADC coun

2000

1500

1000

500

event 16 calo 0 xtal 26 island 2

t,: 2447.640
E,: 7057
pedestal: 1736
%2/ NDF : 105.13

2440 2445 2450 2455 2460 2465 2470 2475
sample number

Row number

Average Crystal Hit Energy

3 4 5 6 7 8 9
Column number

Islands
(calo crate)

Template

Results

Calibrations
&
Corrections

g

2= Fermilab

Processing statistics

* See MicroBooNE style spreadsheet

* The experiment will take ~300M fills

* Target is to keep up with data taking (12 fills/s)

* So our time budget is 80 CPU-ms/fill or with 1000 CPUs 80 s/fill
e Calorimetry reconstruction is 1 s/fill

* Tracking reconstruction is ~ 100 s/fill (rough order of magnitude)

e “Faster” Simulation is ~ 1s/muon, 16,000 muons per fill
* Generate 4.5 fills/hour/CPU; 3M fills/month with 1000 CPUs

* Lots of optimization opportunities
* Learning from other experiments

. 2= Fermilab

Introduction to Nearline Processing

* DQM is real time monitoring of apparatus (plots update immediately)
Statistics on order of a few fills is fine (e.g. 1 sec worth = 12 fills)

Very simple reconstruction
art + ZeroMQ

 Nearline is fast turn-around reconstruction requiring more statistics
(30 minutes ~ 22K fills)

* Physics requirements of Nearline:
Monitor apparatus/physics parameters that require statistics in order to discover problems
on time scale < 1 hr — e.g. beam corrections
Was found to be crucial for SLAC testbeam - will use for e.g. pedestals, proto-wiggle plots

* [See Nearline Breakout talk / Kim] - uses TBB for parallel tasks

. 2= Fermilab

Magnetic Field Measurement

 Another analysis asynchronous to omega_a
* Processing needs are very small compared to omega_a
o Still early days for the field analysis group

* [See Magnetic Field Analysis breakout talk / Ran]

2= Fermilab
44

We've already tested the system

 We've been using this ecosystem for years
* End-to-end Tracker Test beam [Tip-to-tail FNAL Talk / Joe]
* End-to-end Calorimeter Test Beam [Tip-to-tail SLAC / Kim]

* Exercised DAQ systems, art infrastructure, data management, algorithms
 Of course experiment is at a larger scale, but so far so good

 We already have experience before real data comes

e Would like to gain more experience with simulated data

4 2% Fermilab
5

Summary

* Our experiment might be weird, but our offline computing is not

* We haven’t reinvented the wheel and have leveraged infrastructure, tools and expertise to create an ecosystem | think
is uniquely capable

* We have a comprehensive software ecosystem that works and improvements are desired: Documentation, github,
Spack, POMS, Cl, Release team

* Not complete: Databases, Completed simulation & reconstruction — we know this and are working hard

* Need to exercise system at scale, do more optimization studies
* We have an enthusiastic (and | think super-smart), but small developer base
* I’'m confident that we’'re on track for data taking, but a perturbation could make for delays

* See many subsequent talks

. 2= Fermilab

