
Adam Lyon
Muon g-2 Computing Readiness Review
November 7, 2016

Offline System Overview

g-2

×

μ

Outline

• art g-2 framework and offline code structure - our ecosystem
• Data management and production workflow
• Nearline production

• Requirements
• Implementation
• Current status
• Future plans
• Leaving many cool pictures and plots to others

• Is this system ready for data taking?

2

What we’re doing

3

While we get one “answer”,
it has many values feeding 
into it

Road Map for E989

ωa aμ ωp

Run Selection
• accelerator flags
• detector flags
• inf., kick., quad. flags

Calo Reconstruction
• fit, calibration, clustering

Histogramming
• raw T-hist
• lost muon, pile up

Field Reconstruction
• calibrations & corrections
• ωp(r,θ,φ, t)

~

Systematics
• pile up
• lost muon
• gain stability

Systematics
• absolute calibration
• calibration of trolley probes
• interpolation with fixed probes

DAQ
• kicker, quad, fiber harp, IBMS
• slow control
• probes, flux gates and coils
• calorimeter, tracker

Histogram Fitting
• fit pile up corrected T-hist including

lost muon & CBO

Beam dynamics simulation
• muon distribution
• E field and pitch correction

Database
• hardware, connections,  

run log, calibration,  
slow control data

Tracker Reconstruction
• lost muon, pile up
• muon decay distribution

Convolution
• muon decay distribution
• ωp(r,θ,φ, t)

Overall Requirements and Principles

We want to work together!

We need a software system that makes working together easy while maintaining or
sanity

What does this mean?
o Following best coding practices?
o Using standard libraries and APIs?
o Creating your own libraries for others to use?
o Share your code in a repository?
o Documenting your code?
o Find infrastructure code from somewhere?
Yes to all the above

4

Principals

o Science demands reproducibility.
 We must have control over our software

o We want to work together.
 Share ideas through code

o We want to do physics, not computing.
 We wanna make plots! Somehow, that should be easy and sane

o We want to leverage existing expertise
 Don’t reinvent the wheel

5

Principals

6

o Science demands reproducibility.
 Official results come from version controlled software

o We want to work together.
 Code repositories; modular frameworks

o We want to do physics, not computing.
 Infrastructure in a framework + an easy build system

o We want to leverage existing expertise
 Join a “software community”

The art framework

7

Your physics
code

More physics
code

Your friend’s
code

Dynamic library
loading

I/O handling Event Loop &
paths

Run/Subrun/
Event stores

Messaging Configuration

Provenance
generation Metadata

Code you write Code you use from the
framework

The framework handles the
parts of processing that you
don’t care about and just want
to work

Let’s you concentrate on the
parts you do care about – the
physics

Importantly, the framework
centers the “ecosystem”

Our Ecosystem
• Source code version control (git)
• Source code repository (redmine, github)
• Build system (cmake/cetbuildtools/mrb, spack)
• Documentation (Redmine Wiki, PDF, github)
• Development Environment (Editors, XCode, CLion)
• Release & dependency system (UPS, spackdev)
• Build infrastructure (Jenkins, CI)
• Distribution system (SciSoft, CVMFS)
• Software framework (art)
• Simulation (Geant4, CADMesh, artg4)
• Data management (FIFE/SAM, xrootd)
• Job submission (FIFE/jobsub, POMS)
• Databases
• Interactive data analysis (Root, R/Python with  

gallery)
• 3D Visualization (ParaView, artvtk, gm2vtk)

8

• Interactive systems (gm2gpvm, Home Institutions, Laptops)
• Guest systems (Virtualbox/Vagrant, Docker)
• Execution sites (FermiGrid, OSG, HEPCloud, HPC)

How these fit together - architectures

9

Architecture: The art of determining the needs of the user and designing to
meet those needs as effectively as possible within the constraints of
economics and technology

Software/Development Architecture

10

Source code version control

• We were one of the first
experiments at  
Fermilab to use git 
[Because the art team used it]

• We use the gitflow paradigm and
tool

• Hosted by Redmine

• Status: Extremely successful

11

Source code version control
• Challenges:
•Disposing of old feature branches
•Dealing with many multiple repositories

Main offline repositories:
gm2geom, gm2dataproducts, gm2ringsim, 
gm2midastoart, gm2calo, gm2tracker,
gm2unpackers, gm2util, gm2analyses

Hard to know what code is where
Hard to search
Hard to version (in the end it’s the version of 
 the whole that matters)

12

Proposed improvement

• Move to single repository a la CMSSW on github (Redmine as backup)

• Advantages:
• Fixes searching, versioning, what code is where problems
• Leverage work from CMS (took them two years to complete their system)
• Move to github workflow (pull requests, approvals)
• Embedded documentation possible (huge improvement over Redmine) 

•Difficulties:
•Have to implement git sparse checkout
•Have to implement dependency checking
•Migration

• Need time and people to do this (there’s a lot of interest)

13

https://github.com/cms-sw/cmssw

Build/Release system

• Early adopters of cmake/cetbuildtools (developed and used by art team)
• Externals and all of our packages are managed by relocatable UPS
• Externals (gcc, Geant4, Root, …) come from art team except for a few that I

manage (paraviewvtk, cadmesh — in SciSoft)

• mrb “multi-repository-build” is a command line layer on top of cetbuildtools 
[started as “gm2d”; adopted by LArSoft, maintained by Lynn]
• mrb newDev, mrb getgit, mrb setenv, mrb build, mrb test, …

• UPS makes coexisting flavors and versions very easy
• Very successful!

14

Build/Release system

• Challenges:
•Cetbuildtools is a very heavy-handed system; hard to extend; hard to get around limitations
•Does not use cmake “in the cmake way” [to be fair, cetbuildtools predates many cmake improvements]
•Ups-ifying external packages is difficult
• Small community uses cetbuildtools and ups

• Waiting to see where “Spack” goes
•Appears to be much more flexible, easier to maintain
• Larger community
•Really need “spackdev” too (equivalent to mrb)

15

Development environment

• Survey taken in early 2016

16

Are you a g-2 developer? What kind of laptop do you use?

Substantial use of laptops

• Native Yosemite, Native El-Capitan, SLF6 via Vagrant/Virtualbox,  
SLF6/7 via Docker

• Vagrant/Virtualbox (makes Windows laptops usable) 
https://github.com/lyon-fnal/centos-gm2-dev

• Docker 
https://github.com/lyon-fnal/docker-gm2

• Emacs, Xcode, CLion — can integrate with mrb

• gm2gpvmXX machines (all SLF6) are useful, but a little slow

17

https://github.com/lyon-fnal/centos-gm2-dev
https://github.com/lyon-fnal/docker-gm2

Testing

• We have integration tests
•Our builds run tests to exercise parts of the simulation

• Unit tests are virtually non-existent
•We don’t know how to write these, especially in a Geant4 environment
•We don’t know how to get this expertise
•Had an IMSA student try to write some tests — not very successful
•We should think about this for algorithm writing — but no expertise

• We rely on validation tests
• This seems to be sufficient for now
• [See Verification Package Breakout / Renee]

18

Optimization

19

• Docker container monitoring makes image001.pngoptimization easier

Build Infrastructure

• Jenkins is used to make released code
• SLF6, SLF7, Mac Yosemite, Mac El Capitan
•gm2 “superbuild”
•May just release SLF6

• Jenkins is awesome, except…
• The mac mini machines are severely underpowered
•CVMFS on the macs has severe problems, I think due to load; I gave up on it
• The whole system is poorly monitored - build nodes go down without notice

• We need to investigate the Continuous Integration system

20

Documentation

• We are still looking for the right documentation 
solution

• Redmine Wiki
• Easy to write, Hard to search, a pain to maintain,  
Can’t link to code versions, Can’t read offline, Hard to index, 
very far from code, ugly

• PDF Manual
• See link
• Easy to write [mixture of LaTeX, Markdown, and  
generated], easy to search, can link to code versions,  
can read offline, a pain to maintain, Easy to index,  
closer to code (in git), less ugly

21

http://gm2-docdb.fnal.gov/cgi-bin/RetrieveFile?docid=1825&filename=manual.pdf&version=11

Documentation
• Two possible directions for improvements:

• Doxygen
• Easy to write, but…
•Hard to write comprehensive documentation in Doxygen
•Often just looking at the code is clearer

• MiniBooNE style README files (Chris Polly)
• Every directory in repository has a comprehensive README describing contents
•Release not allowed until documentation is in place
• Easy to version, easy to search [git grep or with github], easy to link to versions,  

easier to maintain, documentation very near code, can read offline for checked out code, 
can be pretty with Markdown

• Using Github and automatic Markdown rendering would make this really nice
• But would still need a place to document non-code (e.g. submitting jobs, etc)

22

Training

• How to get non-experts up to speed?

• Periodic workshops, usually at collaboration meetings

• Often refer people to the art class materials from summer 2015 and workshop
from summer 2016

• … and the art workbook

• The Offline software Manual is helpful

23

Official Releases

• Philosophy:
•A “base release” vX_00_00 is only art and externals. No g-2 code. With this release, you can
build all of the g-2 code yourself
•A “point release” vX_YY_ZZ is layered over a base release with specific versions of g-2
packages. v7_02_00

• A release “system” is evolving
•Pieces are automated with Jenkins (suffers when Jenkins has problems)
•But it is time-consuming — we need a release manager

• In Practice:
•We don’t make releases as often as we should
•We often go a year without upgrading art (though this hasn’t been a huge problem)
•We need a release manager — I do this now and can’t always give it full attention

24

Release distribution
• We manage with relocatable UPS
• For release management, relocatable UPS works extremely well [but has other problems]
•All flavors and versions can live together in the same “area” - very convenient
• Spack could eventually replace UPS

• CVMFS is awesome!
• This is our standard (only) way to distribute executable code
• gm2.opensciencegrid.org
•Used on laptops and home institutions
•Hosts g-2 code and externals

• SciSoft
•Used for the source of externals — works well

• No plans to change — Spack may replace UPS, but we’ll still use CVMFS for distribution

25

http://gm2.opensciencegrid.org

Framework — art
• I think I can write that we are all enthusiastic believers in and users of art

• Our simulation system (artg4) has unique flexibility because of art
• We are beginning to use a 3D visualization system with unique flexibility because of art

• We are pushing some envelopes…
• Internal module multithreading with TBB (e.g. process a calorimeter per thread)
•Real time network i/o with Zero-MQ (e.g. for data quality monitoring)

• We are successful in leveraging expertise…
•Redefining events with input source (learned from 35ton)
•Reading raw data format into art (learned from NOvA)
•Making code more efficient (learned from MicroBooNE)
•We consult with art experts often and appreciate their help

26

Software dependency layout

27

We’re moving data products to one place in for gallery
At this point, separate repositories don’t really help

artg4

Geant4

cadmesh

gm2ringsim

gm2dataproductsgm2geom

gm2calo gm2tracker

gm2util

gm2analyses

gm2midas2art gm2unpacker

Data Tiers

• Raw “hits” from DAQ or Simulation

• Calibrated and reconstructed detector 
level data

• Reconstructed physics objects 
ready for analysis

28

RawIslands
(t, V)

CrystalHits
(t, E, 𝛘2)

CaloClusters
(tclus, Eclus, wclus)

(K-S Shaw 2015-11-12)

Data tiers

29

K-S Khaw 2015-11-21

Databases
• We need databases for…
• Hardware production information
• Run parameters (MIDAS ODB)
• Slow control readings and settings
• Calibration data
• Perhaps geometry / alignment information
• Beam information [IFBeam]

• Mantra: We should use existing applications and systems

• The Shanghai group owns this
• We have detailed requirements from g-2 systems

• Consulting with Steve W and Igor M for best path forward

• [See Databases Breakout talk / Dikai]

30

3D Visualization with ParaView

• Crucial for simulation verification — see talks at breakout

31

Interactive Analysis
• Root - of course
• Want to try gallery and open up other analysis tools like R and Python and ?

• How does the “spokesperson” look at the data?
• For SLAC testbeam, converted art files into flat TTree’s
• Easy to make a plot with Root
•But the risk here is the start of another ecosystem
•We’d like to avoid multiple ecosystems on g-2

• A “makestudy” art product will be useful
• Set up a directory and set up environment with one command
• Make a ready-to-go skeleton file

• Gallery is non-trivial and unlike Root - would like to see usability improvements

32

Participation in Offline work

33

Developers

34

Data Management Architecture

35

Data Management Implementation

• Our Mantra: 
We won’t reinvent the wheel

• We use the standard tools 
the standard ways

• FTS will be used for the  
DAQ (already in place)

• We’re using the dCache 
pools including scratch and  
experiment specific

36

Execution Architecture

37

Execution Implementation
• We use jobsub the standard way

• We have python scripts based on NOvA 
and vetted by (former) production group

• Need to investigate POMS

• We have not yet needed resources on OSG 
Would like to leverage Mu2e expertise there

• We are a test case for HPC use 
(artg4 makes parallelization  
straightforward)

• [See Job Submission & Workflow Breakout Talk / Tammy]

38

Data & Execution Summary

39

• Storage:
• 4 TB g-2 persistent
• 10 TB scratch
• 60 TB RW (Tape)

Production tasks

• Simulation campaigns
•Generate samples for lost muon study; practice samples
• [See Simulation Overview talk / James]

• Reconstruction
• T method — convert digitized waveform islands into positron energies and time
• Calorimeter clustering, fitting [See Calorimeter Algorithm talk / Aaron]
•Q method
• Similar to T method, but no energy threshold — histogram all the data
• Tracker
• Track finding and fitting (hard due to varying magnetic field)
• Pitch correction and EDM limit
• [See Tracking Algorithm talk / Tammy]
•Auxiliary Detectors

40

Calorimeter processing

41

K-S Khaw 2016-07-26

Processing statistics

• See MicroBooNE style spreadsheet
• The experiment will take ~300M fills
• Target is to keep up with data taking (12 fills/s)
• So our time budget is 80 CPU-ms/fill or with 1000 CPUs 80 s/fill
• Calorimetry reconstruction is 1 s/fill
• Tracking reconstruction is ~ 100 s/fill (rough order of magnitude)

• “Faster” Simulation is ~ 1s/muon, 16,000 muons per fill
•Generate 4.5 fills/hour/CPU; 3M fills/month with 1000 CPUs

• Lots of optimization opportunities
• Learning from other experiments

42

Introduction to Nearline Processing

• DQM is real time monitoring of apparatus (plots update immediately) 
Statistics on order of a few fills is fine (e.g. 1 sec worth = 12 fills) 
Very simple reconstruction 
art + ZeroMQ

• Nearline is fast turn-around reconstruction requiring more statistics 
(30 minutes ~ 22K fills)

• Physics requirements of Nearline: 
Monitor apparatus/physics parameters that require statistics in order to discover problems
on time scale < 1 hr — e.g. beam corrections 
Was found to be crucial for SLAC testbeam - will use for e.g. pedestals, proto-wiggle plots

• [See Nearline Breakout talk / Kim] - uses TBB for parallel tasks

43

Magnetic Field Measurement

• Another analysis asynchronous to omega_a

• Processing needs are very small compared to omega_a

• Still early days for the field analysis group

• [See Magnetic Field Analysis breakout talk / Ran]

44

We’ve already tested the system

• We’ve been using this ecosystem for years
• End-to-end Tracker Test beam [Tip-to-tail FNAL Talk / Joe]
• End-to-end Calorimeter Test Beam [Tip-to-tail SLAC / Kim]

• Exercised DAQ systems, art infrastructure, data management, algorithms
• Of course experiment is at a larger scale, but so far so good

• We already have experience before real data comes

• Would like to gain more experience with simulated data

45

Summary
• Our experiment might be weird, but our offline computing is not

• We haven’t reinvented the wheel and have leveraged infrastructure, tools and expertise to create an ecosystem I think
is uniquely capable

• We have a comprehensive software ecosystem that works and improvements are desired: Documentation, github,
Spack, POMS, CI, Release team

• Not complete: Databases, Completed simulation & reconstruction — we know this and are working hard 

• Need to exercise system at scale, do more optimization studies

• We have an enthusiastic (and I think super-smart), but small developer base

• I’m confident that we’re on track for data taking, but a perturbation could make for delays

• See many subsequent talks

46

