
artdaq Introduction and Status

artdaq is a toolkit for creating DAQ systems to be run on commodity
servers.

Questions that I hope to answer in these slides:
• What functions does it provide?
• What is (or will be) available when?
• What would a prospective experiment need to provide?
• What choices does it impose?

Other topics:
• Future plans
• Demo?

29-Jan-2013 artdaq & MIDAS Discussion 1

Typical DAQ functionality & components

Data movement and filtering
• Hardware configuration and readout

Data transfer
– Library(ies)
– Transport layer

• Event building
• Reconstruction and filtering

– Framework
– Analysis modules
– Experiment-supplied data

products
• Data logging

– Generic output modules
– Experiment-specific output

modules
• Process state behavior
• Standard applications
• Generic data components
• Raw data format

Control
• System control

– Central application (Run
Control)

– System state model and/or
supported control commands

– Message protocol
– Client library(ies)

• Process management
• Configuration management

– Format
– Distribution scheme
– Storage; management tools;

archiving
– Software configuration

parameter definition
– Hardware configuration

parameter definition
• Run history archiving
• Slow controls
• Remote control

29-Jan-2013 artdaq & MIDAS Discussion 2

Monitoring
• Distributed message logging

– Logging libraries
– Transport layer
– Central viewing and logging

applications
• DAQ monitoring (health and

performance of the DAQ system)
– Client library
– Central viewing and logging

facilities
• Data Quality Monitoring (DQM –

monitoring the quality of the data
and the performance of the
detector)

– Mechanics of making the
data available

– Analysis software
– Viewers for the analysis

results
• Remote monitoring

artdaq for DarkSide-50

Data movement and filtering
• Hardware configuration and readout

(ADC, trigger, TDC)
• Data transfer

– Library(ies)
– Transport layer (MPI)

• Event building
• Reconstruction and filtering

– Framework (art)
– Analysis modules

(compression)
– Experiment-supplied data

products
• Data logging

– Generic output modules
(ROOT)

– Experiment-specific output
modules

• Process state behavior (SMC)
• Standard applications (boardreader,

eventbuilder, aggregator)
• Generic data components

(RawEvent, Fragment)
• Raw data format

Control
• System control

– Central application (Run
Control)

– System state model and/or
supported control commands

– Message protocol (XMLRPC)
– Client library(ies)

• Process management (PMT – uses
mpirun – easy configuration)

• Configuration management
– Format (FHICL)
– Distribution scheme (sent

with control commands)
– Storage; management tools;

archiving
– Software configuration

parameter definition
– Hardware configuration

parameter definition
• Run history archiving
• Slow controls
• Remote control

29-Jan-2013 artdaq & MIDAS Discussion 3

Monitoring
• Distributed message logging

– Logging libraries (MsgFac)
– Transport layer (XMPP)
– Central viewing and logging

applications (MsgFac)
• DAQ monitoring (health and

performance of the DAQ system)
– Client library
– Central viewing and logging

facilities (Ganglia)
– Custom metrics

• Data Quality Monitoring (DQM –
monitoring the quality of the data
and the performance of the
detector)

– Mechanics of making the
data available (art with
special input/output modules)

– Analysis software
– Viewers for the analysis

results
• Remote monitoring

Key: part of artdaq: green; provided by experiment: orange; combination of artdaq and experiment: blue; not applicable or not yet discussed:black.

General artdaq – available soon

Data movement and filtering
• Hardware configuration and readout

(sample provided)
• Data transfer

– Library(ies)
– Transport layer (MPI)

• Event building
• Reconstruction and filtering

– Framework (art)
– Analysis modules (sample

compression algorithm
supplied)

– Experiment-supplied data
products

• Data logging
– Generic output modules

(ROOT)
– Experiment-specific output

modules
• Process state behavior (SMC)
• Standard applications (boardreader,

eventbuilder, aggregator)
• Generic data components

(RawEvent, Fragment)
• Raw data format

Control
• System control

– Central application (Run
Control)

– System state model and/or
supported control commands

– Message protocol (XMLRPC)
– Client library(ies)

• Process management (PMT – uses
mpirun – easy configuration)

• Configuration management
– Format (FHICL)
– Distribution scheme (sent

with control commands)
– Storage; management tools;

archiving
– Software configuration

parameter definition
– Hardware configuration

parameter definition
• Run history archiving
• Slow controls
• Remote control

29-Jan-2013 artdaq & MIDAS Discussion 4

Monitoring
• Distributed message logging

– Logging libraries (MsgFac)
– Transport layer (XMPP)
– Central viewing and logging

applications (MsgFac)
• DAQ monitoring (health and

performance of the DAQ system)
– Client library
– Central viewing and logging

facilities (Ganglia)
– Custom metrics

• Data Quality Monitoring (DQM –
monitoring the quality of the data
and the performance of the
detector)

– Mechanics of making the
data available (art with
special input/output modules)

– Analysis software
– Viewers for the analysis

results
• Remote monitoring

Key: part of artdaq “now”: green; part of artdaq “soon”: gold; provided by experiment: orange; combination of artdaq and experiment: blue; not applicable or not
yet discussed:black.

General artdaq – available soon

29-Jan-2013 artdaq & MIDAS Discussion 5

boardreader

Hardware readout
and configuration

Control messages Message logging

Fragment sending

Experiment-specific
implementations State machine

eventbuilder

art

Control messages Message logging

Fragment receiving
& event building

Experiment-specific
algorithms &
data productsState machine

aggregator

art

Control messages Message logging

Event transfer
and ordering

Online monitoring
algorithms

State machine

Process
Management

Tool

System Control
(Run Control)

Slow Controls

Remote MonitoringRemote Control

Run History
Message
Viewing &
Logging

XMPP

M Instances N Instances

XMLRPC,
Standard commands DAQ

Monitoring

Configuration
Management

Storage, management
tools, archiving

FHICL format

Sent from Run Control

Software CFG params

Hardware CFG params

Key: part of artdaq “now”: green; part of artdaq “soon”: tan;
provided by experiment: orange; combination of artdaq and
experiment: blue; not applicable or not yet discussed:black;
blue arrows show data flow.

Future artdaq

Data movement and filtering
• Hardware configuration and readout

(sample provided)
• Data transfer

– Library(ies)
– Transport layer (MPI)

• Event building
• Reconstruction and filtering

– Framework (art)
– Analysis modules (sample

compression algorithm
supplied)

– Experiment-supplied data
products

• Data logging
– Generic output modules

(ROOT)
– Experiment-specific output

modules
• Process state behavior (SMC)
• Standard applications (boardreader,

eventbuilder, aggregator)
• Generic data components

(RawEvent, Fragment)
• Raw data format

Control
• System control

– Central application (Run
Control)

– System state model and/or
supported control commands

– Message protocol (XMLRPC,
other options)

– Client library(ies)
• Process management (PMT – uses

mpirun – easy configuration)
• Configuration management

– Format (FHICL)
– Distribution scheme (sent

with control commands, other
options)

– Storage; management tools;
archiving

– Software configuration
parameter definition

– Hardware configuration
parameter definition

• Run history archiving
• Slow control toolkit
• Remote control (VNC instructions)

29-Jan-2013 artdaq & MIDAS Discussion 6

Monitoring
• Distributed message logging

– Logging libraries (MsgFac)
– Transport layer (XMPP, other

options)
– Central viewing and logging

applications (MsgFac)
• DAQ monitoring (health and

performance of the DAQ system)
– Client library
– Central viewing and logging

facilities (Ganglia)
– Custom metrics

• Data Quality Monitoring (DQM –
monitoring the quality of the data
and the performance of the
detector)

– Mechanics of making the
data available (art with
special input/output modules)

– Analysis and display toolkit
• Remote monitoring (Screen

Snapshot Service instructions)

Key: part of artdaq “now/soon”: green; possible additions to artdaq: red; provided by experiment: orange; combination of artdaq and experiment: blue; not
applicable or not yet discussed:black.

Existing choices

Control commands are executed synchronously – a configurable timeout value
keeps them from running forever.

The state behavior is part of the core implementation…
• A finite set of control commands is supported
• Process state behavior is fixed (part of the artdaq)

29-Jan-2013 artdaq & MIDAS Discussion 7

Supported external commands

Commands which affect the state of the process:
• init(string ParameterSet) - initializes (configures) the process (and any associated hardware);

returns a success or failure report
• start(integer runNumber) - begins a run; returns a success or failure report
• stop() - ends a run; returns a success or failure report
• pause() - pauses data taking during a run; returns a success or failure report
• resume() - resumes data taking during a run; returns a success or failure report
• shutdown() - prepares the process to be stopped (un-initialize); returns a success or failure report
• soft_init(string ParameterSet) - initializes (configures) some fraction of the software components;

returns a success or failure report
• reinit(string ParameterSet) - re-initializes parts of the software (or the hardware) during a run;

returns a success or failure report
Commands which gather information:
• report(string which) - returns statistics or error reports from some or all of the components in the

process. The "which" argument specifies which statistics to report.
• status() - returns the current externally visible "state"
• reset_stats(string which) - resets some or all of the statistics in the process. The "which" argument

specifies which statistics to reset. Returns a success or failure report.
• legal_commands() - returns the subset of the external commands which are currently legal given

the state of the process

29-Jan-2013 artdaq & MIDAS Discussion 8

Externally visible states

• Booted
– init(pset)

• Ready
– init(pset)
– soft_init(pset)
– start(runNumber)
– shutdown()

• Running
– pause()
– stop()
– init(pset)
– soft_init(pset)
– reinit(pset)

• Paused
– resume()
– stop()
– init(pset)
– soft_init(pset)
– reinit(pset)

• Error
– init(pset)

29-Jan-2013 artdaq & MIDAS Discussion 9

The externally visible states are currently supported are listed here
along with the external commands that are allowed in each state:

Process state model (simplified)

29-Jan-2013 artdaq & MIDAS Discussion 10

Preliminary artdaq class diagram

29-Jan-2013 artdaq & MIDAS Discussion 11

Details

We will be creating an initial release of the ds50daq code soon. It will be packaged and
deployed as a relocatable UPS product, similar to how artdaq and art are packaged and
deployed.

We could move the reusable pieces of ds50daq into artdaq with a couple of weeks of
notice and provide that to users as a UPS product.

In addition, we would like to create an artdaq-sample UPS product (and git repository)
that would demonstrate how a new experiment would create the experiment-specific
pieces of a system that uses artdaq.

29-Jan-2013 artdaq & MIDAS Discussion 12

Current and future users

NOvA Data-Driven Trigger
• art and a few classes from artdaq are being used to run trigger algorithms in the

buffer farm.

DarkSide-50:
• artdaq will be used, as shown in an earlier slide.

uBooNE:
• At the moment, individual classes from the artdaq library are being used in the data

transfer. We may try to convince uBooNE to adopt artdaq more fully, especially if
there will be a need for filtering or compression before writing to disk.

Mu2e:
• The current baseline design uses FPGAs to do the event building, but artdaq can

handle this function, and it will be used for simulation and testing.

Other candidates:
• Minerva? LBNE, ORKA…

29-Jan-2013 artdaq & MIDAS Discussion 13

Backup slides

29-Jan-2013 artdaq & MIDAS Discussion 14

Generic DAQ

29-Jan-2013 artdaq & MIDAS Discussion 15

D
at

a
lin

k
ca

rd

Fragment Receiver Event Builder art

Fragment Receiver

Multicore node
D

at
a

lin
k

ca
rd

P
C

Ie
bu

s
P

C
Ie

bu
s

Event Builder art

Multicore node

... [x M] ... [x N]

Multicore node

Multicore node

Lots of variations:
• multiple fragment receivers per front-end node
• multiple event builder/art process pairs per reconstruction node
• (multiple art processes per event builder)
• everything run on a single node
A flexible configuration process makes testing and deployment easier.

(Round-robin routing
of fragments)

Initial artdaq Goals

• Support the use of commodity computers as close to the data
collection as possible.

• Make efficient use of multi-core computers.
• Take advantage of high-speed networking and hardware buses.
• Support modular algorithms, enable the use of GPGPUs.
• Enable collaborators to contribute to online code development.
• Allow for concurrent processing of events to best utilize all of the

cores on a node.
• Produce an environment for R&D tasks.
• Provide a springboard for DAQ development in future experiments.

29-Jan-2013 artdaq & MIDAS Discussion 16

Initial artdaq architecture (this has changed)

29-Jan-2013 artdaq & MIDAS Discussion 17

Experiment-specific
hardware readout

Experiment-specific
output modules

MPI and mpirun

In artdaq, MPI (Message Passing Interface) is used to transfer data between
the distributed processes and to manage the processes.
• MPI is “a library specification for message passing, designed for high

performance on parallel machines and workstation clusters.”
• It supports point-to-point and collective messaging. It also supports parallel

execution features such as synchronization between processes (e.g. all
process wait until they have all reached a certain point in their execution).

• An MPI “program” contains all of the cooperating processes, and startup is
handled by an agent (mpirun) that runs the program on a configurable set of
nodes.

• In MPI-1, the same executable binary is used for all processes, and the
different processes know which role to perform based on their “rank”.

• For the initial artdaq test system, we wrote a straightforward Python script
to automate the configuration of the nodes and handle the invocation of
mpirun.

29-Jan-2013 artdaq & MIDAS Discussion 18

DarkSide-50 Architecture

29-Jan-2013 artdaq & MIDAS Discussion 19

Fragment Receiver

D
at

a
lin

k
ca

rd

Fragment Receiver

Fragment Receiver

Fragment Receiver

Event Builder art

Aggregator

Fragment Receiver

Fragment Receiver

Fragment Receiver

Fragment Receiver

Fragment Receiver

Fragment Receiver

Fragment Receiver

Fragment Receiver

Multicore node

D
at

a
lin

k
ca

rd
D

at
a

lin
k

ca
rd

P
C

Ie
bu

s
P

C
Ie

bu
s

P
C

Ie
bu

s

… [5 total]

Event Builder art

Multicore node

Q
D

R
 In

fin
ib

an
d

N
et

w
or

k

x N instances

x N instances

